求∫e∧3√xdx的不定积分
2个回答
展开全部
解:
令√x=t,则x=t^2,dx=2tdt
原积分
=∫(e^3t)2tdt
=(2/3)∫tde^(3t)
=(2/3)[te^(3t)-(1/3)∫e^(3t)d(3t)]
=(2/3)[te^(3t)-(1/3)∫de^(3t)]
=(2/3)[te^(3t)-(1/3)e^(3t)]
=(2/3)e^(3t)(t-1/3)
令√x=t,则x=t^2,dx=2tdt
原积分
=∫(e^3t)2tdt
=(2/3)∫tde^(3t)
=(2/3)[te^(3t)-(1/3)∫e^(3t)d(3t)]
=(2/3)[te^(3t)-(1/3)∫de^(3t)]
=(2/3)[te^(3t)-(1/3)e^(3t)]
=(2/3)e^(3t)(t-1/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令x=t²,dx=2tdt
∫(e^3√x)dx
=∫(e^3t)2tdt
=(2/3)∫tde^(3t)
=(2/3)[te^(3t)-∫e^(3t)dt]
=(2/3)[te^(3t)-(1/3)∫e^(3t)d(3t)]
=(2/3)[te^(3t)-(1/3)∫de^(3t)]
=(2/3)[te^(3t)-(1/3)e^(3t)]
=(2/3)e^(3t)(t-1/3)
=(2/3)e^(3√x)(√x-1/3)
∫(e^3√x)dx
=∫(e^3t)2tdt
=(2/3)∫tde^(3t)
=(2/3)[te^(3t)-∫e^(3t)dt]
=(2/3)[te^(3t)-(1/3)∫e^(3t)d(3t)]
=(2/3)[te^(3t)-(1/3)∫de^(3t)]
=(2/3)[te^(3t)-(1/3)e^(3t)]
=(2/3)e^(3t)(t-1/3)
=(2/3)e^(3√x)(√x-1/3)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询