等差数列的通项公式是什么?
1个回答
展开全部
等差数列的通项公式为:an=a1+(n-1)*d,首项a1=1,公差d=2。
通项公式推导:
a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。
前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2
Sn=[n*(a1+an)]/2
Sn=d/2*n²+(a1-d/2)*n
注:以上n均属于正整数。
扩展资料:
如果先不管方阵中的正负号a.第一行全是1b,从2行3列开始所有元素都遵守如下规律Dn(i,j)=Dn(i-1,j)+Dn(i-1,j-1),就是说,除了第一排和主对角线的元素,所有元素的值都等于相邻左边元素的值加上相邻左上角的值。
等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询