定义在R上的函数f(x)满足对于任意实数a、b总有f(a+b)=f(a)f(b)当x>0时0<f(x)<1且f(1)=1/2
定义在R上的函数f(x)满足对于任意实数a、b总有f(a+b)=f(a)f(b)当x>0时0<f(x)<1且f(1)=1/2①用定义法证明函数发(x)在(-∞,∞)上位减...
定义在R上的函数f(x)满足对于任意实数a、b总有f(a+b)=f(a)f(b)当x>0时0<f(x)<1且f(1)=1/2
①用定义法证明函数发(x)在(-∞,∞)上位减函数
②解关于x的不等式f(kx²-5kx+6k)f(-x²+6x-7)>-1/4 (k∈R)
③若x∈[-1,1],求证:(8的k 次方+27的k次方+1)/3≥[6的k 次方 × f(x)]/2 (k∈R) 展开
①用定义法证明函数发(x)在(-∞,∞)上位减函数
②解关于x的不等式f(kx²-5kx+6k)f(-x²+6x-7)>-1/4 (k∈R)
③若x∈[-1,1],求证:(8的k 次方+27的k次方+1)/3≥[6的k 次方 × f(x)]/2 (k∈R) 展开
展开全部
本人也刚上高一,纯属个人解答,如有偏差,请见谅。。。。。 首先是第一问。 在R上任取X1 X2 并且x1>x2 则f(x1)=f(x1-x2+x2)=f(x1-x2)*f(x
2)
因为x1>x2 所以x1-x2>0 所以f(x1-x2)大于0小于1 所以f(x1)<f(x2) 因为x1>x2 所以f(x)再R上是减函数。 减函数已证 。。。。。 第二问可以把左边两个式子合在一起, 右边已知f(1)=1/2
把1/4用f(x)表示出来,再根据减函数把括号内的列出不等式解出来就OK。。。。。。。。。
第三问也是分析 带入 根据它的性质来解 直接把答案告诉你了就没用了,你自己在按这个思路算算吧。。。。。这道题不错,,,,, 希望对你有那么一点帮助。
2)
因为x1>x2 所以x1-x2>0 所以f(x1-x2)大于0小于1 所以f(x1)<f(x2) 因为x1>x2 所以f(x)再R上是减函数。 减函数已证 。。。。。 第二问可以把左边两个式子合在一起, 右边已知f(1)=1/2
把1/4用f(x)表示出来,再根据减函数把括号内的列出不等式解出来就OK。。。。。。。。。
第三问也是分析 带入 根据它的性质来解 直接把答案告诉你了就没用了,你自己在按这个思路算算吧。。。。。这道题不错,,,,, 希望对你有那么一点帮助。
追问
我做出来了,第三问是用基本不等式性质,都化为同幂3k,
追答
好的好的 不错不错,其实抽象函数题的类型与解法都类似,找到方法就好。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询