有关浮点数加减运算的叙述中,正确的是
有关浮点数加减运算的叙述中,正确的是如下:
利用浮点进行运算,称为浮点计算,这种运算通常伴随着因为无法精确表示而进行的近似或舍入。
在计算机科学中,浮点(英语:floating point,缩写为FP)是一种对于实数的近似值数值表现法,由一个有效数字(即尾数)加上幂数来表示,通常是乘以某个基数的整数次指数得到。以这种表示法表示的数值,称为浮点数(floating-point number)。
基本特征
当用不同的电脑计算圆周率时,会发现一台电脑的计算较另一台来讲结果更加精确。或者在进行枪战游戏的时候,当一粒子弹击中墙壁时,墙上剥落下一块墙皮,同样的场面在一台电脑上的表现可能会非常的呆板;
而在另外一台电脑上就会非常生动形象,甚至与我们在现实中看到的所差无几。这都是浮点运算能力的差异导致的。
如果是实数的话,就不是这样了,机器有两种办法表示实数,一种是定点,就是小数点位置是固定的,一种是浮点,就是小数点位置不固定,计算方法也比较麻烦,通常会比整数运算代价大很多。
扩展资料
浮点数,是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学计数法。
例子
计算机里整数和小数形式就是按普通格式进行存储,例如1024、3.1415926等等,这个没什么特点,但是这样的数精度不高,表达也不够全面,为了能够有一种数的通用表示法,就发明了浮点数。
浮点数的表示形式有点像科学计数法(*.*****×10^***),它的表示形式是0.*****×10^***,在计算机中的形式为 .***** e ±***),其中前面的星号代表定点小数,也就是整数部分为0的纯小数,后面的指数部分是定点整数。
利用这样的形式就能表示出任意一个整数和小数,例如1024就能表示成0.1024×10^4,也就是 .1024e+004,3.1415926就能表示成0.31415926×10^1,也就是 .31415926e+001,这就是浮点数。浮点数进行的运算就是浮点运算。