y=x/(x^2-3x+2),求y的n阶导数,求详细过程
展开全部
y=x/(x^2-3x+2)
=2/(x-2) -1/(x-1)
故y的n阶导数就等于2/(x-2)与1/(x-1)的n阶导数之差,
而
[2/(x-2)]′= -2(x-2)^(-2)
[2/(x-2)]′′=2*(-1)*(-2)*(x-2)^(-3)
[2/(x-2)]′′′=2*(-1)*(-2)*(-3)*(x-2)^(-4)
......
[2/(x-2)]^n=2*(-1)(-2)(-3)....(-n) *(x-2)^(-n-1)
同理
1/(x-1)的n阶导数= (-1)(-2)(-3)....(-n) *(x-1)^(-n-1)
所以
y的n阶导数
=2*(-1)(-2)(-3)....(-n) *(x-2)^(-n-1) - (-1)(-2)(-3)....(-n) *(x-1)^(-n-1)
=(-1)(-2)(-3)....(-n) *[2(x-2)^(-n-1) -(x-1)^(-n-1)]
=2/(x-2) -1/(x-1)
故y的n阶导数就等于2/(x-2)与1/(x-1)的n阶导数之差,
而
[2/(x-2)]′= -2(x-2)^(-2)
[2/(x-2)]′′=2*(-1)*(-2)*(x-2)^(-3)
[2/(x-2)]′′′=2*(-1)*(-2)*(-3)*(x-2)^(-4)
......
[2/(x-2)]^n=2*(-1)(-2)(-3)....(-n) *(x-2)^(-n-1)
同理
1/(x-1)的n阶导数= (-1)(-2)(-3)....(-n) *(x-1)^(-n-1)
所以
y的n阶导数
=2*(-1)(-2)(-3)....(-n) *(x-2)^(-n-1) - (-1)(-2)(-3)....(-n) *(x-1)^(-n-1)
=(-1)(-2)(-3)....(-n) *[2(x-2)^(-n-1) -(x-1)^(-n-1)]
追问
不好意思指出一下,第二行是否为=2x/(x-2)-x(x-1)
追答
当然不是的呢,
x/(x^2-3x+2)
=2/(x-2) -1/(x-1)
而
2x/(x-2)- x/(x-1)
=x^2 /(x^2-3x+2)
展开全部
y=x/(x^2-3x+2)
=x/(x-1)(x-2)=2/(x-2)-1/(x-1)
由于1/(x-2)的n阶导数=(-1)^n*n!/(x-2)^(n+1)
1/(x-1)的n阶导数=(-1)^n*n!/(x-1)^(n+1)
所以:y的n阶导数
=2(-1)^n*n!/(x-2)^(n+1)-(-1)^n*n!/(x-1)^(n+1)
=(-1)^n*n![2/(x-2)^(n+1)-1/(x-1)^(n+1)]
=x/(x-1)(x-2)=2/(x-2)-1/(x-1)
由于1/(x-2)的n阶导数=(-1)^n*n!/(x-2)^(n+1)
1/(x-1)的n阶导数=(-1)^n*n!/(x-1)^(n+1)
所以:y的n阶导数
=2(-1)^n*n!/(x-2)^(n+1)-(-1)^n*n!/(x-1)^(n+1)
=(-1)^n*n![2/(x-2)^(n+1)-1/(x-1)^(n+1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询