函数的极限到底是什么意思?
展开全部
如果一个数列的项数n趋向于无穷大时,数列的极限存在,那么就称这个数列收敛。
而对于函数,如果一个函数的自变量趋向于X0(或∞)时,它的因变量趋向某个特定值或者趋向∞那么就称函数在X0(或无穷大)处有极限。
若一个数列收敛,那么这个数列就是有界数列,若一个函数在某点处有极限,那么这个函数在这个点处的去心领域内有界,也就是说局部有界。
1,有界不一定有极限,例如振荡函数(正弦函数)。
2,函数极限存在一定是有界的,既有下界,也有上界。(利用“单调有界必有极限”的原理去证明数列(在N⇒∞时)极限存在时,只需证明有下界(单调递减)或者有上界(单调递增)。
3,级数的部分和极限存在,则该级数收敛。
4,如果级数收敛,则一般项的极限趋于0。反之,则不成立。
补充:无界跟无穷极限的关系。
如果函数极限为无穷,则该函数是无界的;反之,函数无界,不能证明函数的极限为无穷。函数无界也有可能是正振荡函数(越振幅值越大的)。
充要条件:当N⇒∞时,Xn⇒X0,f(Xn)⇒∞ ,那么函数f(x)无界。反之亦成立。
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询