如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.

设⊙O交OB于F,连DF并延长交CB的延长线于G.(1)∠BFG与∠BGF是否相等?为什么?(2)求由DG、GE和弧ED所围成图形的面积.(阴影部分)... 设⊙O交OB于F,连DF并延长交CB的延长线于G.(1)∠BFG与∠BGF是否相等?为什么?(2)求由DG、GE和弧ED所围成图形的面积.(阴影部分) 展开
吃拿抓卡要
推荐于2017-12-16 · TA获得超过9.8万个赞
知道大有可为答主
回答量:9341
采纳率:93%
帮助的人:5494万
展开全部
(1)∠BFG=∠BGF
证明:连接OD
AC为圆切线,所以OD⊥AC
∠ADO=∠ACB,所以OD∥BC
∠ODF=∠BGF(内错角),∠OFD=∠BFG(对顶角)
因为OD=OF,∠ODF=∠OFD
所以∠BFG=∠BGF
(2)连接OE
∠ACB=90,AC=BC
BC为圆切线,所以OE⊥BC
已证OD∥BC,所以OD⊥OE
∠DOE=90
O为AB中点,OD∥BC,所以OD为△ABC中位线
因此OD=BC/2=3,即圆半径为3。
D为AC中点,CD=AC/2=3。
同理,E为BC中点,BE=BC/2=3
AC=BC,简单可得,△ABC为等腰直角三角形
所以AB=√2AC=6√2
BF=(6√2-6)/2=3√2-3
由(1)得,∠BFG=∠BGF,BG=BF=3√2-3
EG=BE+BG=3√2
S扇形DOE=90×3²×π/360=9π/4
S△DOE=1/2×DO×EO=9/2
S△DEG=1/2×EG×CD=9√2/2
S阴影部分=S扇形DOE+S△DEG-S△DOE=9π/4+9(√2-1)/2
shadow_ali
2012-12-23 · TA获得超过292个赞
知道答主
回答量:17
采纳率:0%
帮助的人:7.5万
展开全部
(1)∠BFG=∠BGF
证明:连接OD
AC为圆切线,所以OD⊥AC
∠ADO=∠ACB,所以OD∥BC
∠ODF=∠BGF(内错角),∠OFD=∠BFG(对顶角)
因为OD=OF,∠ODF=∠OFD
所以∠BFG=∠BGF
(2)连接OE
∠ACB=90,AC=BC
BC为圆切线,所以OE⊥BC
已证OD∥BC,所以OD⊥OE
∠DOE=90
O为AB中点,OD∥BC,所以OD为△ABC中位线
因此OD=BC/2=3,即圆半径为3。
D为AC中点,CD=AC/2=3。
同理,E为BC中点,BE=BC/2=3
AC=BC,简单可得,△ABC为等腰直角三角形
所以AB=√2AC=6√2
BF=(6√2-6)/2=3√2-3
由(1)得,∠BFG=∠BGF,BG=BF=3√2-3
EG=BE+BG=3√2
S扇形DOE=90×3²×π/360=9π/4
S△DOE=1/2×DO×EO=9/2
S△DEG=1/2×EG×CD=9√2/2
S阴影部分=S扇形DOE+S△DEG-S△DOE=9π/4+9(√2-1)/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式