设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值。

要详细过程哟!!... 要详细过程哟!! 展开
mscheng19
2012-11-21 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2259万
展开全部
1、f(0)=lim f(x)=lim f(x)/x^2 *lim x^2=1*0=0,
于是f'(0)=lim [f(x)-f(0)]/x
=lim f(x)/x^2*x
=lim f(x)/x^2 *lim x
=1*0=0,
即f'(0)=0。
2、对e=1/2,存在d>0,使得
0<|x|<d时,有|f(x)/x^2-1|<e=1/2,
即1/2<f(x)/x^2<3/2。
于是有f(x)>x^2/2>0=f(0),当0<|x|<d时,
因此x=0是极小值点。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式