1个回答
展开全部
1、f(0)=lim f(x)=lim f(x)/x^2 *lim x^2=1*0=0,
于是f'(0)=lim [f(x)-f(0)]/x
=lim f(x)/x^2*x
=lim f(x)/x^2 *lim x
=1*0=0,
即f'(0)=0。
2、对e=1/2,存在d>0,使得
0<|x|<d时,有|f(x)/x^2-1|<e=1/2,
即1/2<f(x)/x^2<3/2。
于是有f(x)>x^2/2>0=f(0),当0<|x|<d时,
因此x=0是极小值点。
于是f'(0)=lim [f(x)-f(0)]/x
=lim f(x)/x^2*x
=lim f(x)/x^2 *lim x
=1*0=0,
即f'(0)=0。
2、对e=1/2,存在d>0,使得
0<|x|<d时,有|f(x)/x^2-1|<e=1/2,
即1/2<f(x)/x^2<3/2。
于是有f(x)>x^2/2>0=f(0),当0<|x|<d时,
因此x=0是极小值点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |