求解,I=∫∫x[1+yf(x^2+y^2)]dxdy,D由y=x^3,y=1,x=-1围成,f为连续函数,求I 过程越详细越好 非常感谢

丘冷萱Ad
2012-11-22 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3964万
展开全部
这个题你需要先自己画一下图,画好后在第二象限画曲线y=-x³,将区域分为两部分
上面这部分记为:D1
左边这部分记为:D2
D1关于y轴对称,D2关于x对称
将积分化为:
∫∫ x[1+yf(x²+y²)] dxdy
=∫∫ x dxdy + ∫∫ xyf(x²+y²)] dxdy
xyf(x²+y²)] 这个函数关于x和y均为奇函数,因此在D1和D2上的积分均为0
前一个积分在D1上的积分为0,因此只需要积前一个积分在D2上的积分

∫∫(D2) x dxdy
=∫[-1→0] dx∫[x³→-x³] x dy
=∫[-1→0] -2x⁴dx
=-(2/5)x⁵ |[-1→0]
=-2/5

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
匿名用户
2012-11-22
展开全部
利用对称性处理那个未知函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式