
已知cos(π/6-α)=根号2/3,求cos(5π/6+α)-sin²(α-π/6)的值
展开全部
解:cos(π/6-α)=根号2/3
故cos(5π/6+α)=-cos【π-(5π/6+α)】=-cos(π/6-α)=-根号2/3=-√6/3
sin²(α-π/6)=1-cos²(α-π/6)=1-cos²(π/6-α)=1-2/3=1/3
则cos(5π/6+α)-sin²(α-π/6)=-√6/3-1/3=-(√6+1)/3
故cos(5π/6+α)=-cos【π-(5π/6+α)】=-cos(π/6-α)=-根号2/3=-√6/3
sin²(α-π/6)=1-cos²(α-π/6)=1-cos²(π/6-α)=1-2/3=1/3
则cos(5π/6+α)-sin²(α-π/6)=-√6/3-1/3=-(√6+1)/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询