∫sint/tdt=π积分下、上限分别为-∞,∞,怎么证?

信号与系统里的一个结论,sint/t是抽样信号,求它在整个时间上的积分。我记得复变函数里有相关的证明,可一下子找不着书了,拜托诸位,谢谢!谢谢root_gao,待我算一下... 信号与系统里的一个结论,sint/t是抽样信号,求它在整个时间上的积分。我记得复变函数里有相关的证明,可一下子找不着书了,拜托诸位,谢谢!
谢谢root_gao,待我算一下。
w2gh你的方法很不错,把答案复制到这里,不要浪费分了,谢谢大家了。
http://zhidao.baidu.com/question/49940087.html
展开
小圆帽聊汽车
高粉答主

2019-12-13 · 致力于汽车领域知识的解答
小圆帽聊汽车
采纳数:796 获赞数:270536

向TA提问 私信TA
展开全部

因为sint/t不存在初等函数的原函数,所以下面引入一个“收敛因子”e^(-xt)(x>=0),转而讨论含参量的积分.

I(x)=∫e^(-xt)sint/tdt (积分上限为∞,下限为0)

显然:

I(0)=∫sint/tdt(积分上限为∞,下限为0)

I`(x)=∫∂(e^(-xt)sint/t)/∂x dt (积分上限为∞,下限为0)

=∫e^(-xt)sin(t)sint(积分上限为∞,下限为0)

=e^(-xt)(xsint+cost)/(1+x^2)|(上限为∞,下限为0)

=-1/(1+x^2)

从而有

I(x)=-∫(1/(1+x^2))dx=-arctan(x)+C (1)

|I(x)|=|∫e^(-xt)sint/tdt|

≤∫|e^(-xt)sint/t|dt

≤∫e^(-xt)dt

=-(1/x)*e^(-xt)|(对t的积分原函数,上限为∞,下限为0)

=1/x -->0 (x-->+∞)

即lim(I(x))-->0 (x-->+∞)

对(1)式两端取极限:

lim(I(x))(x-->+∞)

=-lim(-arctan(x)+C ) (x-->+∞)

=-π/2+C

即有0=-π/2+C,可得C=π/2

于是(1)式为

I(x)=-arctan(x)+π/2

limI(x)=lim(-arctan(x)+π/2) (x-->0)

I(0)=π/2

所以有

I(0)=∫sint/tdt(积分上限为∞,下限为0)=π/2

因为sinx/x是偶函数,所以

∫sint/tdt(积分上限为∞,下限为-∞)

扩展资料:

如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个

 上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。

如果黎曼可积的非负函数f在

 上的积分等于0,那么除了有限个点以外,

 。如果勒贝格可积的非负函数f在

 上的积分等于0,那么f几乎处处为0。如果

 中元素A的测度

 等于0,那么任何可积函数在A上的积分等于0。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
轩轩智慧先锋
高能答主

2019-07-09 · 希望是生命中的那束光,照亮我们的未来。
轩轩智慧先锋
采纳数:2714 获赞数:533586

向TA提问 私信TA
展开全部

证明过程如下:

证明:

∵ sint/t不存在初等函数的原函数

∴e^(-xt)(x>=0)

∴I(x)=∫e^(-xt)sint/tdt (积分上限为∞,下限为0)

∴I(0)=∫sint/tdt(积分上限为∞,下限为0)

∵I`(x)=∫∂(e^(-xt)sint/t)/∂x dt (积分上限为∞,下限为0)

=∫e^(-xt)sin(t)sint(积分上限为∞,下限为0)

=e^(-xt)(xsint+cost)/(1+x^2)|(上限为∞,下限为0)

=-1/(1+x^2)

∴I(x)=-∫(1/(1+x^2))dx=-arctan(x)+C

|I(x)|=|∫e^(-xt)sint/tdt|

≤∫|e^(-xt)sint/t|dt

∴≤∫e^(-xt)dt

扩展资料

证明函数积分的方法:

如果上限x在区间[a,b]上任意变动,则对于每一个取定的x值,定积分有一个对应值,所以它在[a,b]上定义了一个函数。

设函数f(x)在区间[a,b]并且设x为[a,b]上的一点,积分变上限函数和积分变下限函数统称积分变限函数。上式为积分变上限函数的表达式,当x与a位置互换后即为积分变下限函数的表达式,所以我们只讨论积分变上限函数即可。

积分变限函数与以前所接触到的所有函数形式都很不一样。首先,它是由定积分来定义的;其次,这个函数的自变量出现在积分上限或积分下限。

若函数f(x)在区间[a,b]上可积,则积分变上限函数在[a,b]上连续。如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数。

若函数f(x)在区间[a,b]上连续,则积分变上限函数就是f(x)在[a,b]上的一个原函数。



本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友93e129558
2008-04-02 · TA获得超过866个赞
知道小有建树答主
回答量:346
采纳率:0%
帮助的人:0
展开全部
你要是学过《信号与系统》就很好证明了。利用傅立叶变换,变到频域来证明即可。Sa(t)频域函数是一个门函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
w2gh
推荐于2017-11-25 · TA获得超过4177个赞
知道小有建树答主
回答量:850
采纳率:100%
帮助的人:1097万
展开全部
证明这个函数的在整个定义域内连续,可导,可积省略。

下面证明∫sint/tdt=π/2(积分上限为∞,下限为0)

因为sint/t不存在初等函数的原函数,所以下面引入一个“收敛因子”e^(-xt)(x>=0),转而讨论含参量的积分。

I(x)=∫e^(-xt)sint/tdt (积分上限为∞,下限为0)

显然:
I(0)=∫sint/tdt(积分上限为∞,下限为0)

I`(x)=∫∂(e^(-xt)sint/t)/∂x dt (积分上限为∞,下限为0)
=∫e^(-xt)sin(t)sint(积分上限为∞,下限为0)
=e^(-xt)(xsint+cost)/(1+x^2)|(上限为∞,下限为0)
=-1/(1+x^2)

从而有

I(x)=-∫(1/(1+x^2))dx=-arctan(x)+C (1)

|I(x)|=|∫e^(-xt)sint/tdt|
≤∫|e^(-xt)sint/t|dt
≤∫e^(-xt)dt
=-(1/x)*e^(-xt)|(对t的积分原函数,上限为∞,下限为0)
=1/x -->0 (x-->+∞)

即lim(I(x))-->0 (x-->+∞)

对(1)式两端取极限:

lim(I(x))(x-->+∞)
=-lim(-arctan(x)+C ) (x-->+∞)
=-π/2+C

即有0=-π/2+C,可得C=π/2

于是(1)式为

I(x)=-arctan(x)+π/2

limI(x)=lim(-arctan(x)+π/2) (x-->0)

I(0)=π/2

所以有
I(0)=∫sint/tdt(积分上限为∞,下限为0)=π/2

因为sinx/x是偶函数,所以
∫sint/tdt(积分上限为∞,下限为-∞)


这个地方些数学公式很是不方便的。另外也可以用复变函数来求解的。如果有不懂的地方问我。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
snabc123
2008-04-02
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
图在哪?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式