设二阶常系数线性微分方程y''+αy'+βy=γe^x的一个特解为y=e^(2x)+(1+x)e^x试确定常数αβγ,并求通解
2个回答
展开全部
y=e^(2x)+(1+x)e^x,
∴y'=2e^(2x)+(2+x)e^x,
y''=4e^(2x)+(3+x)e^x,
代入原方程得
4e^(2x)+(3+x)e^x+α[2e^(2x)+(2+x)e^x]+β[e^(2x)+(1+x)e^x]=γe^x,
∴(4+2α+β)e^(2x)+[3+x+α(2+x)+β(1+x)-γ]e^x=0,对任意x都成立,
∴4+2α+β=0,
3+2α+β-γ=0,
1+α+β=0.
解得α=-3,β=2,γ=-1.
∴原方程是y''-3y'+2=-e^x,
特征根是1,2,其通解是y=c1e^(2x)+c2e^x+e^(2x)+(1+x)e^x.
∴y'=2e^(2x)+(2+x)e^x,
y''=4e^(2x)+(3+x)e^x,
代入原方程得
4e^(2x)+(3+x)e^x+α[2e^(2x)+(2+x)e^x]+β[e^(2x)+(1+x)e^x]=γe^x,
∴(4+2α+β)e^(2x)+[3+x+α(2+x)+β(1+x)-γ]e^x=0,对任意x都成立,
∴4+2α+β=0,
3+2α+β-γ=0,
1+α+β=0.
解得α=-3,β=2,γ=-1.
∴原方程是y''-3y'+2=-e^x,
特征根是1,2,其通解是y=c1e^(2x)+c2e^x+e^(2x)+(1+x)e^x.
展开全部
4e^(2x)+e^x+e^x+(1+x)e^x+α[2e^(2x)+e^x+(1+x)e^x]+β[e^(2x)+(1+x)e^x]=γe^x
e^(2x)(4+2α+β)+e^x[3+2α+β-γ]+xe^x(1+α+β)=0
4+2α+β=0 (1)
3+2α+β-γ=0 (2)
1+α+β=0 (3)
(1-3) -> α=-3 代入(3) -> β=2 代入(2) -> γ=-1
原方程变为:y''-3y'+2y=-e^x
其通解: y=C1e^x+C2e^(2x)+xe^x
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |