f(x)=∫(0,2x)f(t/2)dt+ln2,显然f(0)=ln2 两边求导 f'(x)=f(2x/2)*(2x)' 即f'(x)=2f(x)
为什么不用将dt配成d(2/t),原式变成f(x)=2∫(0,2x)f(t/2)d2/t)+ln2两边求导f'(x)=2f(2x/2)*(2x)'即f'(x)=4f(x)...
为什么不用将dt配成d(2/t),原式变成f(x)=2∫(0,2x)f(t/2)d2/t)+ln2
两边求导
f'(x)=2f(2x/2)*(2x)'
即f'(x)=4f(x) 展开
两边求导
f'(x)=2f(2x/2)*(2x)'
即f'(x)=4f(x) 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询