f(x)=∫(0,2x)f(t/2)dt+ln2,显然f(0)=ln2 两边求导 f'(x)=f(2x/2)*(2x)' 即f'(x)=2f(x)

为什么不用将dt配成d(2/t),原式变成f(x)=2∫(0,2x)f(t/2)d2/t)+ln2两边求导f'(x)=2f(2x/2)*(2x)'即f'(x)=4f(x)... 为什么不用将dt配成d(2/t),原式变成f(x)=2∫(0,2x)f(t/2)d2/t)+ln2
两边求导
f'(x)=2f(2x/2)*(2x)'
即f'(x)=4f(x)
展开
fin3574
高粉答主

2012-11-22 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134560

向TA提问 私信TA
展开全部
如果要d(x/2)的话,注意积分上下限可能有更变的。
将t变为t/2,d(t/2) = (1/2)dt ==> dt = 2 d(t/2)
当t = 0时,t/2 = 0
当t = 2x时,t/2 = 2x/2 = x
所以∫(0→2x) f(t/2) dt = ∫(0→x) f(t/2) * 2 d(t/2) = 2∫(0→x) f(u) du,假设u = t/2
∴f'(x) = 2f(x) * x' = 2f(x)
nsjiang1
2012-11-22 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3688万
展开全部
当把t/2看成整个变量u时,u的积分区间是[0,x],就没有后面的2x求导了.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式