求助,这道题怎么做?
1个回答
展开全部
f(x)
= ∫(0->x) ( e^(t^2) -1 ) dt / x^2 ; x ≠0
= 0 ; x=0
f'(0)
=lim(h->0) [f(h) - f(0)] /h
=lim(h->0) [∫(0->h) ( e^(t^2) -1 ) dt /h^2 ]/h
=lim(h->0) ∫(0->h) ( e^(t^2) -1 ) dt /h^3 (0/0)
=lim(h->0) ( e^(h^2) -1 ) /(3h^2) (0/0)
=lim(h->0) 2h. e^(h^2) /(6h)
=(1/3)lim(h->0) e^(h^2)
=1/3
= ∫(0->x) ( e^(t^2) -1 ) dt / x^2 ; x ≠0
= 0 ; x=0
f'(0)
=lim(h->0) [f(h) - f(0)] /h
=lim(h->0) [∫(0->h) ( e^(t^2) -1 ) dt /h^2 ]/h
=lim(h->0) ∫(0->h) ( e^(t^2) -1 ) dt /h^3 (0/0)
=lim(h->0) ( e^(h^2) -1 ) /(3h^2) (0/0)
=lim(h->0) 2h. e^(h^2) /(6h)
=(1/3)lim(h->0) e^(h^2)
=1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询