Range在数学上是什么意思?该做什么?
range是值域,也就是某个变量的取值范围
值域在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
即f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
扩展资料:
常见函数值域:
1、y=kx+b (k≠0)的值域为R。
2、y=k/x 的值域为(-∞,0)∪(0,+∞)。
3、y=√x的值域为x≥0。
4、y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]。
5、y=a^x 的值域为 (0,+∞)。
6、y=lgx的值域为R。
参考资料来源:百度百科-值域
2022-12-05 广告
range是值域,也就是某个变量的取值范围
值域在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
即f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
值域是解决函数中的问题的,有些高等数学中的函数题是可以通过值域结果的,比如说可以求出题中的函数表达式。
扩展资料
求值域方法:
1、图像法
根据函数图象,观察最高点和最低点的纵坐标。
2、配方法
利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5、换元法
包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
6、判别式法
判别式法即利用二次函数的判别式求值域。
7、复合函数法
设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域;
8、不等式法
基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
9、分离常数法
把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。
参考资料:百度百科-值域