一道高一数学题:求大神详解!
f(x)=(x+a)/[x^2+(b-1)x+1]是定义在[-1,b]上的奇函数。(1)求a,b的值;(2)用单调性定义证明:f(x)在[-1,b]上为单调递增函数。...
f(x)=(x+a)/[x^2+(b-1)x+1]是定义在[-1,b]上的奇函数。 (1)求a,b的值; (2)用单调性定义证明:f(x)在[-1,b]上为单调递增函数。
展开
展开全部
因为其为奇函数所以定义域关于原点对称所以b=1,f(x)=(x+a)/[x^2+1],又f(0)=0,所以a=0,由于是特值法还需要证明一下,所以f(x)=x/[x^2+1],f(-x)=-x/[x^2+1],f(x)+f(-x)=0,符合。
(2)取-1<x1<x2<1,f(x1)-f(x2)=[x1(x2^2+1)-x2(x1^2+1)]/(x2^2+1)(x1^2+1)=(x1x2-1)(x2-x1),因为x1x2<0,x2-x1>0所以f(x1)-f(x2)<0,所以其为增函数
(2)取-1<x1<x2<1,f(x1)-f(x2)=[x1(x2^2+1)-x2(x1^2+1)]/(x2^2+1)(x1^2+1)=(x1x2-1)(x2-x1),因为x1x2<0,x2-x1>0所以f(x1)-f(x2)<0,所以其为增函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)因为是奇函数所以f(0)=0 所以a=0
因为是奇函数所以f(1)=-f(-1) 可以算出b=1
(2)设-1<x1<x2<1
你带入后化简 可以得出 f(x2)-f(x1)>0所以f(x)在[-1,b]上为单调递增函数。
祝你学习愉快
因为是奇函数所以f(1)=-f(-1) 可以算出b=1
(2)设-1<x1<x2<1
你带入后化简 可以得出 f(x2)-f(x1)>0所以f(x)在[-1,b]上为单调递增函数。
祝你学习愉快
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)定义域对称,所以b=-(-1)=1
f(-x)=(-x+a)/(x^2+1)=-f(x)=-(x+a)/(a^2+1)
得到a=0
(2) f(x)=x/(x^2+1)
f(x)=x/(x^2+1)=1/(x+1/x)
x+1/x的单调性是在(-1,0)和(0,1)上分别单调递增
而且f(0)=0, f(x)<0当x<0, f(x)>0当x>0,
综合得到,f(x)在[-1,1]上为单调递增函数。
f(-x)=(-x+a)/(x^2+1)=-f(x)=-(x+a)/(a^2+1)
得到a=0
(2) f(x)=x/(x^2+1)
f(x)=x/(x^2+1)=1/(x+1/x)
x+1/x的单调性是在(-1,0)和(0,1)上分别单调递增
而且f(0)=0, f(x)<0当x<0, f(x)>0当x>0,
综合得到,f(x)在[-1,1]上为单调递增函数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个很简单嘛,首先奇函数有哪些性质,再次只是闭区间,说明△怎么样啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询