∫xsin2xdx

小小芝麻大大梦
高粉答主

2019-04-10 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:1007万
展开全部

∫xsin2xdx=(1/4)sin2x-(1/2)xcos2x+C。C为常数。

解答过程如下:

∫xsin2xdx

=(-1/2)∫xdcos2x

=(-1/2)(xcos2x-∫cos2xdx)

=(-1/2)(xcos2x-(1/2)sin2x)+C

=(1/4)sin2x-(1/2)xcos2x+C

扩展资料:

同角三角函数的基本关系式

倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;

商的关系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;

平方关系:sin²α+cos²α=1。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

百度网友04a0473
推荐于2018-03-13 · TA获得超过1.1万个赞
知道大有可为答主
回答量:2534
采纳率:0%
帮助的人:1074万
展开全部
∫xsin2xdx
=(-1/2)∫xdcos2x
=(-1/2)(xcos2x-∫cos2xdx)
=(-1/2)(xcos2x-(1/2)sin2x)+C
=(1/4)sin2x-(1/2)xcos2x+C
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式