已知矩阵A=(1 1 2 a 3,2 2 3 1 4,1 0 1 1 5,2 3 5 5 4)的秩为3,求a的值
扩展资料
矩阵的秩
定理:矩阵的行秩,列秩,秩都相等。
定理:初等变换不改变矩阵的秩。
定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。
定理:矩阵的乘积的秩Rab<=min{Ra,Rb};
引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。