已知cos(75°-α)=-1/3,且-180°<α<-120°,求cos(105°+α)+cos(15°+α)的值
1个回答
展开全部
已知-180°<α<-120°,那么:120°<-α<180°
有:195°<75°-α<255°
即角75°-α是第三象限角
已知cos(75°-α)=-1/3,所以:sin(75°-α)=-根号[1-cos²(75°-α)]=-(2根号2)/3
又cos(75°-α)=cos[180°-(105°+α)]=-cos(105°+α)
那么:cos(105°+α)=-cos(75°-α)=1/3
而sin(75°-α)=sin[90°-(15°+α)]=cos(15°+α)=-(2根号2)/3
所以:cos(105°+α)+cos(15°+α)=1/3 - (2根号2)/3=(1- 2根号2)/3
有:195°<75°-α<255°
即角75°-α是第三象限角
已知cos(75°-α)=-1/3,所以:sin(75°-α)=-根号[1-cos²(75°-α)]=-(2根号2)/3
又cos(75°-α)=cos[180°-(105°+α)]=-cos(105°+α)
那么:cos(105°+α)=-cos(75°-α)=1/3
而sin(75°-α)=sin[90°-(15°+α)]=cos(15°+α)=-(2根号2)/3
所以:cos(105°+α)+cos(15°+α)=1/3 - (2根号2)/3=(1- 2根号2)/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询