在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1)。
展开全部
作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.
则∠ACO=∠ODB=90°,
∴∠AOC+∠OAC=90°.
又∵∠AOB=90°,
∴∠AOC+∠BOD=90°
∴∠OAC=∠BOD.
又∵AO=BO,
∴△ACO≌△ODB.
∴OD=AC=1,DB=OC=3.
∴点B的坐标为(1,3).
(2)抛物线过原点,可设所求抛物线的解析式为:y=ax2+bx.
将A(-3,1),B(1,3),O(0,0)代入y=ax2+bx,得9a-3b=1a+b=3,
解得a=
56b=
136.
故所求抛物线的解析式为y=56x2+136x.
(3)S△AOB=S梯形ACDB-S△AOC-S△BOD
=12×(1+3)×(1+3)-12×3×1-12×1×3
=8-32-32
=8-3
=5.
则∠ACO=∠ODB=90°,
∴∠AOC+∠OAC=90°.
又∵∠AOB=90°,
∴∠AOC+∠BOD=90°
∴∠OAC=∠BOD.
又∵AO=BO,
∴△ACO≌△ODB.
∴OD=AC=1,DB=OC=3.
∴点B的坐标为(1,3).
(2)抛物线过原点,可设所求抛物线的解析式为:y=ax2+bx.
将A(-3,1),B(1,3),O(0,0)代入y=ax2+bx,得9a-3b=1a+b=3,
解得a=
56b=
136.
故所求抛物线的解析式为y=56x2+136x.
(3)S△AOB=S梯形ACDB-S△AOC-S△BOD
=12×(1+3)×(1+3)-12×3×1-12×1×3
=8-32-32
=8-3
=5.
2012-11-23
展开全部
B是(1,3) 下面的解析式希望你能自己解答,这是考抛物线解析式最简单的了,已知A(-3,1) B(1,3) O(0,0) 你可以设y=ax(2)+bx,代进去就很容易解了——————里面有对全等三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询