切线方程与法线方程有何区别

 我来答
那年丶人已散尽
高粉答主

2020-01-05 · 关注我不会让你失望
知道小有建树答主
回答量:137
采纳率:0%
帮助的人:5.1万
展开全部

1、计算方式不同

切线方程的计算方法有向量法,分析解析法,代入法等。

而法线方程的计算方法:法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。

2、定义不同

切线方程定义:是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究。分析方法有向量法和解析法。

法线方程定义:法线斜率与切线斜率乘积为-1的方程。

扩展资料:

切线方程是一条直线即类似于g(x) = kx + b。要求这点的切线方程,求得斜率k 之后代入点(a,f(a))便可求得b,从而得解。

由于斜率 = lim(△x->0) [△y/△x] = dy/dx,即斜率是曲线的导数f’(x)。

那么在点(a,f(a))的切线方程是f’(x)(a-x)+f(a)。

牛顿法:也就是从估计点x0出发,以y=f(x0)+f'(x0)(x-x0)作为对y=f(x)的估计,求得根x1。x1=x0-f(x0)/f'(x0)依次迭代。

显然该切线的斜率等于曲线的斜率k=f'(x0),那么该切线的方程为y=f'(x0)(x-x0)+f(x0)(这里是牛顿法的核心,也就是使用切线对曲线进行近似)。

参考资料来源:百度百科-切线方程

                        百度百科-法线方程



百度网友2af95f2
2017-01-01 · TA获得超过112个赞
知道答主
回答量:50
采纳率:0%
帮助的人:36.6万
展开全部
法线方程的斜率是对应切线方程的负倒数
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
情牵网络谢英雄2250
高粉答主

2020-11-12 · 关注我不会让你失望
知道答主
回答量:11
采纳率:25%
帮助的人:2.1万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式