
已知x的平方+4y的平方-4x+4y+5=0,求,如图
展开全部
解:∵x²+4y²-4x+4y+5=0
(x-2)²+(2y+1)²=0
∴x=2,y=-1/2
则,所求原式=[2*4-(-1/2)*4]/(2²+2×(-1/2)-2×(-1/2)²)x(-2+2x(-1/2)/[2×(-1/2)-(-1/2²)]÷(-2²-(-1/2)²)/(-1/2)
=-51/136
(x-2)²+(2y+1)²=0
∴x=2,y=-1/2
则,所求原式=[2*4-(-1/2)*4]/(2²+2×(-1/2)-2×(-1/2)²)x(-2+2x(-1/2)/[2×(-1/2)-(-1/2²)]÷(-2²-(-1/2)²)/(-1/2)
=-51/136
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
x²+4y²-4x+4y+5=0
(x²-4x+4)+(4y²+4y+1)=0
(x-2)²+(2y+1)²=0
x-2=0 且 2y+1=0
x=2, y=-1/2
[(x^4-y^4)/(x²+xy-2y²)]×[(x+2y)/(xy-y²)]÷[(-x²-y²)/y]²
={ (x²+y²)(x+y)(x-y)/[(x+2y)(x-y)] }×{ (x+2y)/[y(x-y)] }×[y²/(x²+y²)²]
=y(x+y)/[(x-y)(x²+y²)]
=(-1/2)×(2-1/2)/{ (2+1/2)×[2²+(-1/2)²)] }
=-(3/4)/(5/2×17/4)
=-(3/4)/(85/8)
=-3/4×8/85
=-6/85
x²+4y²-4x+4y+5=0
(x²-4x+4)+(4y²+4y+1)=0
(x-2)²+(2y+1)²=0
x-2=0 且 2y+1=0
x=2, y=-1/2
[(x^4-y^4)/(x²+xy-2y²)]×[(x+2y)/(xy-y²)]÷[(-x²-y²)/y]²
={ (x²+y²)(x+y)(x-y)/[(x+2y)(x-y)] }×{ (x+2y)/[y(x-y)] }×[y²/(x²+y²)²]
=y(x+y)/[(x-y)(x²+y²)]
=(-1/2)×(2-1/2)/{ (2+1/2)×[2²+(-1/2)²)] }
=-(3/4)/(5/2×17/4)
=-(3/4)/(85/8)
=-3/4×8/85
=-6/85
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
-6/85
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询