闭区间单调函数一定可积吗?怎么证明?

教育小百科达人
2021-01-18 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

闭区间单调函数一定可积。

具体证明如图:

 


不强调区间的情况下,所谓的单调函数是指, 对于整个定义域而言,函数具有单调性。而不是针对定义域的子区间而言。

区间具有单调性的函数并不一定是单调函数,而单调函数的子区间上一定具有单调性。具有单调性函数可以根据区间不同而单调性不同。

扩展资料:

利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是严格增函数,导函数值小于0,说明是严格减函数,前提是原函数必须是连续的。当导数大于等于0时也可为增函数,同理当导数小于等于0时也可为减函数。

单调函数是序理论的中心。它们大量出现于这个主题的文章和在这些地方的找到的应用中。著名的特殊单调函数是序嵌入(x ≤ y当且仅当f(x) ≤ f(y) 的函数)和序同构(双射序嵌入)。

我爱学习112
高粉答主

2020-12-28 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:163万
展开全部

证明可积就是要证明积分不为无穷大,这样才能积出一个确定的值;

1、闭区间上的单调函数一定存在  最大值Max  和  最小值Min

2、由积分定理有:Min×【区间长度】=<积分值=<Max×【区间长度】

所以:闭区间单调函数一定可积

扩展资料

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
求安春0Hh
2012-11-24 · TA获得超过161个赞
知道答主
回答量:59
采纳率:0%
帮助的人:20.8万
展开全部

证明可积就是要证明积分不为无穷大,这样才能积出一个确定的值;

  1. 闭区间上的单调函数一定存在  最大值Max  和  最小值Min

  2. 由积分定理有:Min×【区间长度】=<积分值=<Max×【区间长度】

           所以:闭区间单调函数一定可积

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
探花As
2012-11-24 · TA获得超过9663个赞
知道大有可为答主
回答量:2656
采纳率:77%
帮助的人:1109万
展开全部

一定可积,证明见图

追问
谢谢,不过这证明太专业,不是数学专业的。
追答
这是数学分析里的证明。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式