设x,y,z都是正数,求证:2/(x+y)+2/(y+z)+2/(z+x)≥9/(x+y+z)。
3个回答
展开全部
证法一:
由柯西不等式,有:
[1/(x+y)+1/(y+z)+1/(x+z)][(x+y)+(y+z)+(x+z)]≧(1+1+1)^2
∴2(x+y+z)[1/(x+y)+1/(y+z)+1/(x+z)]≧9,
∴2/(x+y)+2/(y+z)+2/(x+z)≧9/(x+y+z)。
证法二:
不失一般性,令x≦y≦z,则:1/(y+z)≦1/(x+z)≦1/(x+y)。
由排序不等式:顺序和大于乱序和。有:
x/(y+z)+y/(x+z)+z/(x+y)≧x/(x+z)+y/(x+y)+z/(y+z),
x/(y+z)+y/(x+z)+z/(x+y)≧z/(x+z)+x/(x+y)+y/(y+z),
上述两式相加,得:
2[x/(y+z)+y/(x+z)+z/(x+y)]≧3,
∴x/(y+z)+y/(x+z)+z/(x+y)≧3/2,
∴[1+x/(y+z)]+[1+y/(x+z)]+[1+z/(x+y)]≧3/2+3=9/2,
∴(x+y+z)/(y+z)+(x+y+z)/(x+z)+(x+y+z)/(x+y)≧9/2,
∴2/(x+y)+2/(y+z)+2/(x+z)≧9/(x+y+z)。
由柯西不等式,有:
[1/(x+y)+1/(y+z)+1/(x+z)][(x+y)+(y+z)+(x+z)]≧(1+1+1)^2
∴2(x+y+z)[1/(x+y)+1/(y+z)+1/(x+z)]≧9,
∴2/(x+y)+2/(y+z)+2/(x+z)≧9/(x+y+z)。
证法二:
不失一般性,令x≦y≦z,则:1/(y+z)≦1/(x+z)≦1/(x+y)。
由排序不等式:顺序和大于乱序和。有:
x/(y+z)+y/(x+z)+z/(x+y)≧x/(x+z)+y/(x+y)+z/(y+z),
x/(y+z)+y/(x+z)+z/(x+y)≧z/(x+z)+x/(x+y)+y/(y+z),
上述两式相加,得:
2[x/(y+z)+y/(x+z)+z/(x+y)]≧3,
∴x/(y+z)+y/(x+z)+z/(x+y)≧3/2,
∴[1+x/(y+z)]+[1+y/(x+z)]+[1+z/(x+y)]≧3/2+3=9/2,
∴(x+y+z)/(y+z)+(x+y+z)/(x+z)+(x+y+z)/(x+y)≧9/2,
∴2/(x+y)+2/(y+z)+2/(x+z)≧9/(x+y+z)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令x≤y≤z
则1/(y+z)≤1/(x+z)≤1/(x+y)
排序不等式:
x/(y+z)+y/(x+z)+z/(x+y)≥x/(x+z)+y/(x+y)+z/(y+z) ①
x/(y+z)+y/(x+z)+z/(x+y)≥z/(x+z)+x/(x+y)+y/(y+z) ②
①+②:2[x/(y+z)+y/(x+z)+z/(x+y)]≥3
即:x/(y+z)+y/(x+z)+z/(x+y)≥3/2
[1+x/(y+z)]+[1+y/(x+z)]+[1+z/(x+y)]≥(3/2)+3=9/2
∴(x+y+z)/(y+z)+(x+y+z)/(x+z)+(x+y+z)/(x+y)≥9/2
即:2/(x+y)+2/(y+z)+2/(z+x)≥9/(x+y+z)
则1/(y+z)≤1/(x+z)≤1/(x+y)
排序不等式:
x/(y+z)+y/(x+z)+z/(x+y)≥x/(x+z)+y/(x+y)+z/(y+z) ①
x/(y+z)+y/(x+z)+z/(x+y)≥z/(x+z)+x/(x+y)+y/(y+z) ②
①+②:2[x/(y+z)+y/(x+z)+z/(x+y)]≥3
即:x/(y+z)+y/(x+z)+z/(x+y)≥3/2
[1+x/(y+z)]+[1+y/(x+z)]+[1+z/(x+y)]≥(3/2)+3=9/2
∴(x+y+z)/(y+z)+(x+y+z)/(x+z)+(x+y+z)/(x+y)≥9/2
即:2/(x+y)+2/(y+z)+2/(z+x)≥9/(x+y+z)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式*(x+y+z) 在用公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询