展开全部
分部积分:udv=uv-vdu
∫(1-t^2)*cos(wt)dt=1/w*∫(1-t^2)*d(sin(wt))=
1/w*(1-t^2)*sin(wt)-1/w*∫sin(wt)d(1-t^2)=1/w*(1-t^2)*sin(wt)+1/w*∫2t*sin(wt)dt
再对∫2t*sin(wt)dt分部积分
∫2t*sin(wt)dt=-1/w*∫2td(cos(wt)=-1/w*2t*cos(wt)+1/w*∫2cos(wt)dt
=-1/w*2t*cos(wt)+1/w^2*2sin(wt)
那么∫(1-t^2)*cos(wt)dt=1/w*(1-t^2)*sin(wt)-1/w^2*2t*cos(wt)+1/w^3*2sin(wt)
∫(1-t^2)*cos(wt)dt=1/w*∫(1-t^2)*d(sin(wt))=
1/w*(1-t^2)*sin(wt)-1/w*∫sin(wt)d(1-t^2)=1/w*(1-t^2)*sin(wt)+1/w*∫2t*sin(wt)dt
再对∫2t*sin(wt)dt分部积分
∫2t*sin(wt)dt=-1/w*∫2td(cos(wt)=-1/w*2t*cos(wt)+1/w*∫2cos(wt)dt
=-1/w*2t*cos(wt)+1/w^2*2sin(wt)
那么∫(1-t^2)*cos(wt)dt=1/w*(1-t^2)*sin(wt)-1/w^2*2t*cos(wt)+1/w^3*2sin(wt)
展开全部
令t=x-π/2,用换元积分法可得
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令t=π-x,整理后就是那个结果
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
公式,记得就好
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询