已知tanθ=2,则sinθ/(sin3θ-cos3θ)=

A.10/7B.7/10C.9/7D9/10还有一种不用立方差的方法:∵tanθ=2∴sinθ=2cosθ,代入sin²θ+cos²θ=15cos&#... A.10/7
B.7/10
C.9/7
D9/10

还有一种不用立方差的方法:
∵ tanθ=2
∴ sinθ=2cosθ, 代入sin²θ+cos²θ=15cos²θ=1
∴ cos²θ=1/5
∴ sinθ/(sin³θ-cos³θ)
=2cosθ/(8cos³θ-cos³θ)
=2cosθ/7cos³θ
=2/cos²θ
将cos²θ=1/5 即可得=10/7
展开
feidao2010
2012-11-24 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
∵ tanθ=2
∴ sinθ=2cosθ,
代入sin²θ+cos²θ=1
5cos²θ=1
∴ cos²θ=1/5
∴ sinθ/(sin³θ-cos³θ)
=sinθ/[(sinθ-cosθ)(sin²θ+sinθcosθ+cos²θ)]
=sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=2cosθ/[(2cosθ-cosθ)(1+2cosθcosθ)]
=2cosθ/[cosθ(1+2cos²θ)]
=2/(1+2cos²θ)
=2/(1+2/5)
=2/(7/5)
=10/7
牵思茵Z2
2012-11-24 · TA获得超过2039个赞
知道小有建树答主
回答量:597
采纳率:0%
帮助的人:413万
展开全部
tanθ=sinθ/cosθ=2
sinθ=2cosθ

sinθ/(sin^3θ-cos^3θ)
=sinθ/[(sinθ-cosθ)(sin^2θ+sinθcosθ+cos^2θ)]
=sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=2cosθ/[(2cosθ-cosθ)(1+2cosθcosθ)]
=2cosθ/[cosθ(1+2cosθcosθ)]
=2/(2+2cos2θ)
=1/(1+cos2θ)
=1/[1+(1-tan^2θ)/(1+tan^2θ)]
=1/[1+(1-2^2)/(1+2^2)]
=1/[1-3/5]
=1/[2/5]
=5/2不懂追问,希望采纳
我这个答案肯定真确的
相信我
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式