计算n阶行列式
2cosa10……012cosa1……0012cosa……0..0……012cosa...
2cosa 1 0 ……0
1 2cosa 1 ……0
0 1 2cosa……0
.
.
0 …… 0 1 2cosa 展开
1 2cosa 1 ……0
0 1 2cosa……0
.
.
0 …… 0 1 2cosa 展开
3个回答
展开全部
Dn=sin(n+1)θ/sinθ
证明:
按第1列展开得: Dn=2cosθD(n-1) - D(n-2).
下用归纳法证明
当n=1时, D1=2cosθ
sin(n+1)θ/sinθ=sin2θ/sinθ=2cosθ.
所以n=1时结论成立,即D1=sin(1+1)θ/sinθ.
假设k<n时结论成立, 则k=n时
Dn=2cosθD(n-1) - D(n-2)
=2cosθsin(n-1+1)θ/sinθ - sin(n-2+1)θ/sinθ
=2cosθsinnθ/sinθ - sin(n-1)θ/sinθ
=[2cosθsinnθ - sin(n-1)θ]/sinθ
= ......
= sin(n+1)θ/sinθ
所以k=n时结论也成立.
综上可知, 对任意自然数n, Dn=sin(n+1)θ/sinθ.
证明:
按第1列展开得: Dn=2cosθD(n-1) - D(n-2).
下用归纳法证明
当n=1时, D1=2cosθ
sin(n+1)θ/sinθ=sin2θ/sinθ=2cosθ.
所以n=1时结论成立,即D1=sin(1+1)θ/sinθ.
假设k<n时结论成立, 则k=n时
Dn=2cosθD(n-1) - D(n-2)
=2cosθsin(n-1+1)θ/sinθ - sin(n-2+1)θ/sinθ
=2cosθsinnθ/sinθ - sin(n-1)θ/sinθ
=[2cosθsinnθ - sin(n-1)θ]/sinθ
= ......
= sin(n+1)θ/sinθ
所以k=n时结论也成立.
综上可知, 对任意自然数n, Dn=sin(n+1)θ/sinθ.
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
用归纳法做,
当n=1时是2cosa
多求几个N就会发现规律,然后用归纳法做!
当n=1时是2cosa
多求几个N就会发现规律,然后用归纳法做!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有两种方法。
一、把行列式Dn按照第一行展开=2Dn-1-Dn-2
所以Dn-Dn-1=Dn-1-Dn-2=...=D2-D1=1
又因为D1=2
即可得Dn通项公式Dn=n+1
二、把第一行的(-1/2)倍加到第二行上,然后把第二行的(-2/3倍)加到第三行上……最后把倒数第二行的(-(n-1)/n)倍加到最后一行。
这样Dn就变为一个上三角行列式,
Dn=2*(3/2)*(4/3)......*((n+1)/n)=n+1
这个其实是线性代数很常见的一道题。码字太累。。望采纳
一、把行列式Dn按照第一行展开=2Dn-1-Dn-2
所以Dn-Dn-1=Dn-1-Dn-2=...=D2-D1=1
又因为D1=2
即可得Dn通项公式Dn=n+1
二、把第一行的(-1/2)倍加到第二行上,然后把第二行的(-2/3倍)加到第三行上……最后把倒数第二行的(-(n-1)/n)倍加到最后一行。
这样Dn就变为一个上三角行列式,
Dn=2*(3/2)*(4/3)......*((n+1)/n)=n+1
这个其实是线性代数很常见的一道题。码字太累。。望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |