高一数学:已知函数f(x)满足:ax·f(x)=b+f(x),f(1)=2,方程f(x)=2x有且只

高一数学:已知函数f(x)满足:ax·f(x)=b+f(x),f(1)=2,方程f(x)=2x有且只有唯一的实数解,而且ab≠0.(1)求解析式(2)讨论其单调性... 高一数学:已知函数f(x)满足:ax·f(x)=b+f(x),f(1)=2,方程f(x)=2x有且只有唯一的实数解,而且ab≠0. (1)求解析式 (2)讨论其单调性 展开
死亡中的我
2012-11-25 · 超过14用户采纳过TA的回答
知道答主
回答量:74
采纳率:0%
帮助的人:45万
展开全部
(1)把f(1)=2代入原式,得到:2a=b+2,整理得2a-b=2
把f(x)=2x带入原式,得到:2ax^2-2x-b=0.因为方程f(x)=2x有且只有唯一的实数解,所以判别式△=0,即4+8ab=0联立两条方程,解得a=1/2,b=-1
所以函数为f(x)=2/(2-x)
(2)设x1>x2,则f(x1)-f(x2)=2/(2-x1)-2/(2-x2)=2(x1-x2)/(2-x1)(2-x2)
①x1-x2>0,2-x1>0时,2-x2>0(一定大于0)即f(x1)>f(x2),此时为增函数
②x1-x2>0,2-x1<0时,2-x2>0(一定大于0)即f(x1)<f(x2),此时为减函数

不懂继续问我

参考资料: 自己大脑

sunny青春2012
2012-11-25
知道答主
回答量:3
采纳率:0%
帮助的人:4466
展开全部
(1)把f(1)=2代入原式,得到:2a=b+2,整理得2a-b=2
把f(x)=2x带入原式,得到:2ax^2-2x-b=0.因为方程f(x)=2x有且只有唯一的实数解,所以判别式△=0,即4+8ab=0联立两条方程,解得a=1/2,b=-1
所以函数为f(x)=2/(2-x)
(2)设x1>x2,则f(x1)-f(x2)=2/(2-x1)-2/(2-x2)=2(x1-x2)/(2-x1)(2-x2)
①x1-x2>0,2-x1>0时,2-x2>0(一定大于0)即f(x1)>f(x2),此时为增函数
②x1-x2>0,2-x1<0时,2-x2>0(一定大于0)即f(x1)<f(x2),此时为减函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Baby伤不起啊99
2012-11-25
知道答主
回答量:16
采纳率:0%
帮助的人:2.5万
展开全部
把f(1)=2代入原式,得到:2a=b+2,整理得2a-b=2
把f(x)=2x带入原式,得到:2ax^2-2x-b=0.因为方程f(x)=2x有且只有唯一的实数解,所以判别式△=0,即4+8ab=0联立两条方程,解得a=1/2,b=-1
所以函数为f(x)=2/(2-x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式