哥德巴赫猜想到底有什么意义
哥德巴赫猜想的现实意义:
哥德巴赫猜想不是一个弧立的数学问题。当年华罗庚教授倡导并组织研究这个难题,是有深邃的战略眼光的。因为它是带动解析数论、最终带动数学向前发展的重要推动力。如果孤立地看待哥德巴赫猜想,或把它当做一个数学游戏,可以随便猜一猜,那就偏了。
目前看来,“1+1”这颗灿烂的“明珠”并非距我们“一步之遥”,而仍在遥远的“天边”,在用今天最先进的“宇航工具”都不易到达的地方。
当代中外研究数论的专家终不能使“猜想”变为“定理”,实在不是由于他们不思努力、不想摘那“皇冠上的明珠”。数学理论有一个由粗到精的逻辑严密化过程,要靠长期的积累,有时会长达数十年,几百年,甚至上千年。
曾与其兄潘承洞在数论方面一起做出重大贡献的数学家、北大教授潘承彪感慨地说,搞数论研究的人谁不想摘取那颗“明珠”啊,但那只是一种理想,按目前国际数学界的理论发展水平,看来在相当时期内是难以达到的。
王元教授编辑了《哥德巴赫猜想》一书,汇集了世界上最优秀的论文20篇。他在该书前言中写道:“可以确信,在哥德巴赫猜想的研究中,有待于将来出现一个全新的数学观念”。这,已成为中国数学界同仁的共识。
扩展资料
哥德巴赫猜想是数学中的一个古典难题,它可以表述为:凡大于等于4之偶数必为两个素数之和(“1+1”是它的简单表述,即一个素数加一个素数)。
1742年,德国数学家哥德巴赫发现这个现象后,由于无法用严格的数学方法证明命题的正确性,故只能称之为猜想。他写信给当时瑞士大数学家欧拉,请他证明。欧拉一直到离开人世也没证出来,但他相信这个猜想是对的。从此,中外数学家们高擎火炬、辈辈相承地研究这个难题。
本世纪以来,研究有了突破性进展:1920年,挪威数学家布朗证明出“9+9”;1956年,苏联数学家维诺格拉多夫证明了“3+3”;1957年,我国数学家王元证明出“2+3”;1962年,我国数学家潘承洞证明了“1+4”。
到1966年,数学家陈景润证明的“1+2”在世界数学界引起轰动。“陈氏定理”的内容是:充分大的偶数可表示为一个素数及一个不超过两个素数的乘积之和。这就是至今有关“猜想”证明的最好结果。
参考资料来源:百度百科-哥德巴赫猜想
参考资料来源:人民网-是正确认识哥德巴赫猜想了的时候
哥德巴赫猜想是:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和;哥德巴赫猜想促进了数学事业的发展和进步。
民间数学家们如此醉心于哥猜,而不关心黎曼猜想之类的更有意义的问题呢?一个重要的原因就是,黎曼猜想对于没有学过数学的人来说,想读明白是什么意思都很困难.而哥德巴赫猜想对于小学生来说都能读懂。
数学界普遍认为,这两个问题的难度不相上下.民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,一般认为,初等数学无法解决哥德巴赫猜想.退一步讲,即使那天有一个牛人,在初等数学框架下解决了哥德巴赫猜想,有什么意义呢?这样解决,恐怕和做了一道数学课的习题的意义差不多了。
拓展资料:
哥德巴赫(1690.3.18-1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城)。哥德巴赫之所以在数学上负有盛名,是由于他在1742年给欧拉的一封信中提到所谓“哥德巴赫猜想”。
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个;=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个;=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(9 + 9)。这种缩小包围圈的办法很管用,科学家们于是从(9+9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen;s Theorem)——“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
在陈景润之前,关於偶数可表示为 s 个质数的乘积与 t 个质数的乘积之和(简称“s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 ;9 + 9 ;。
1924年,德国的拉特马赫(Rademacher)证明了;7 + 7 ;。
1932年,英国的埃斯特曼(Estermann)证明了 ;6 + 6 ;。
1937年,意大利的蕾西(Ricci)先后证明了;5 + 7 ;, ;4 + 9 ;, ;3 + 15 ;和;2 + 366 ;
1938年,苏联的布赫夕太勃(亦译布赫斯塔勃)证明了;5 + 5 ;。
1940年,苏联的布赫夕太勃证明了 ;4 + 4 ;。
1948年,匈牙利的瑞尼(Renyi)证明了;1 + c ;,其中 c 是一很大的自然数。
1956年,中国的王元证明了 ;3 + 4 ;。
1957年,中国的王元先后证明了 ;3 + 3 ;和 ;2 + 3 ;。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 ;1 + 5 ;, 中国的王元证明了;1 + 4 ;。
1965年,苏联的布赫夕太勃和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了;1 + 3 ;。
1966年,中国的陈景润证明了 ;1 + 2 ;。
最终会由谁攻克 ;1 + 1 ;这个难题呢?现在还没法预测。
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。”通常这个结果表示为 1+2。这是目前这个问题的最佳结果。
数学界有一个共识,一流世界难题本身并不重要,重要的是为解决它而产生的新的数学方法和新的数学思想必将拓宽数学基础,试问哪一门成熟的科学能离开数学的发展.所以说世界难题的破解是一只会产金蛋的鹅,而不仅仅是这只鹅本身的价值.
离散数学在计算机科学与技术的地位,如同微积分在物理学与工程技术中的地位一样重要,由于计算机及人工智能科学是近几十年快速发展起来的新兴学科,其数学基础还有很大的拓广空间.中国预印本.数学序号:1286论文<<一个挑战世界难题的数学模型>>为证明哥猜,孪猜提出将现代的离散数学和古老的数论的公理系统链接起来构建一个更大更强的相容统一的公理体系.这种思想方法与美国数学家朗兰兹的纲领是一致的.期望数学界同仁志士作更深入一歩的探讨.看看哥猜,孪猜这两只鹅能否为促进数学进一步发展下个金蛋.
关于"哥德巴赫猜想"中"1+1"怎么算?
证明数学定理的演绎法,若用语言叙述就是:" 若A1与若A1则A2"同时成立,那么必有A2成立.这就是推理规则中的分离规则(简称MP规则).全称命题蕴涵特称命题,若用语言叙述就是: 若全称命题成立,那么它的特称命题成立.这就是推理规则中的概括规则(简称UG规则).中国预印本.数学序号:1286文在证猜过程中两种推理规则都用上了.特别要注意的是,文章中用的运算方法是公理集合论ZFC,尤其是利用"非分量同余关系"将两个列向量的平方差转换成两个素向量之和.这就是"1+1"算法的关键(见文章第86-92页).再利用完全归纳法证明了一个比哥猜更强的定理.亊实上,哥德巴赫猜想和孪生素数猜想就是这条定理的两个推论而已.对离散数学(组合数学)领域的专家学者和师生来说,看懂并非难亊,甚至自己还可证明一些感兴趣的其他素数分布问题,得到某些改进或超越前人的结果.
评论