已知(X-1)²+(y-2)²=0
求1/XY+1/(x+1)(Y+1)+1/(X+2)(Y+2)+······+1/(x+1989)(y+1989)的值...
求1/XY+1/(x+1)(Y+1)+1/(X+2)(Y+2)+······+1/(x+1989)(y+1989)的值
展开
4个回答
展开全部
由条件可知x=1,y=2,则原式=1/(1*2)+1/(2*3)+……+1/(1990*1991)。
采用裂项法,1/(1*2)=1/1-1/2,1/(2*3)=1/2-1/3,因此原式=1/1-1/2+1/2-1/3+1/3-1/4+……+1/1990-1/1991=1-1/1991=1990/1991。
采用裂项法,1/(1*2)=1/1-1/2,1/(2*3)=1/2-1/3,因此原式=1/1-1/2+1/2-1/3+1/3-1/4+……+1/1990-1/1991=1-1/1991=1990/1991。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(X-1)²+(y-2)²=0
∴x-1=0
y-2=0
∴x=1
y=2
1/XY+1/(x+1)(Y+1)+1/(X+2)(Y+2)+······+1/(x+1989)(y+1989)
=1/1×2+1/2×3+1/3×4+……+1/1990×1991
=1-1/2+1/2-1/3+1/3-1/4+……+1/1990-1/1991
=1-1/1991
=1990/1991
∴x-1=0
y-2=0
∴x=1
y=2
1/XY+1/(x+1)(Y+1)+1/(X+2)(Y+2)+······+1/(x+1989)(y+1989)
=1/1×2+1/2×3+1/3×4+……+1/1990×1991
=1-1/2+1/2-1/3+1/3-1/4+……+1/1990-1/1991
=1-1/1991
=1990/1991
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵(X-1)²+(y-2)²=0
∴x-1=0,y-2=0
∴x=1,y=2
1/XY+1/(x+1)(Y+1)+1/(X+2)(Y+2)+······+1/(x+1989)(y+1989)
=1/1*2+1/2*3+1/3*4+……+1/1990*1991
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/1990-1/1991)
=1-1/2+1/2-1/3+1/3-1/4+……+1/1990-1/1991
=1-1/1991
=1990/1991
∴x-1=0,y-2=0
∴x=1,y=2
1/XY+1/(x+1)(Y+1)+1/(X+2)(Y+2)+······+1/(x+1989)(y+1989)
=1/1*2+1/2*3+1/3*4+……+1/1990*1991
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/1990-1/1991)
=1-1/2+1/2-1/3+1/3-1/4+……+1/1990-1/1991
=1-1/1991
=1990/1991
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询