已知椭圆的离心率为2分之根号3,a,b分别为椭圆的右顶点和上顶点,f为椭圆的右焦点且三角形 55
3个回答
展开全部
离心率e = √[(a² - b²)/a²] = √3/2
(a² - b²)/a² = 3/4
a² = 4b²
a = 2b
c = √(a² - b²) = √3b
A(a, 0), B(0, b), F(√3b, 0)
三角形ABF的面积S= (1/2)*FA*OB = (1/2)(a - √3b)b = 1 -√3/2
(a - √3b)b = (2b - √3b)b = 2 - √3
b = 1
a = 2
椭圆方程: x²/4 +y² = 1
直线l: y = kx + m, kx -y + m = 0
圆x² +y² = 1的圆心为原点,半径为1
原点与直线l的距离等于半径:1 = |k*0 - 0 + m|/√(k² + 1)
m² = k² + 1
将直线l的方程代入椭圆方程:
(4k² + 1)x² + 8kmx + 4(m² - 1) = 0
△ = (8km)² - 4(4k²+1)*4(m²-1)
= 64k² - 16m² + 16
= 64k² - 16(k²+1)+16
= 48k²
x1 = (-8km + √△)/(8k²+2), x2 = (-8km - √△)/(8k²+2)
y1 = kx1 + m, y2 = kx2 + m
MN² = (x1 - x2)² + (y1-y2)²
= (x1-x2)² +(kx1 + m - kx2 -m)
= (1 + k²)(x1 - x2)²
= (1+k²)[2√△)/(8k²+2)]²
= (1+k²)*48k²/(4k²+1)²
= 48k²(1+k²)/(4k²+1)²
MN上的高=圆半径1, 所以只须MN最大即可。MN最大,MN²也最大
MN² = f(k) = 48k²(1+k²)/(4k²+1)²
f(k)/48 = k²(1+k²)/(4k²+1)²
f'(k)/48 = 2k(1+k²)/(4k²+1)² + k²*2k/(4k²+1)² + k²(1+k²)(-2)*8k/(4k²+1)³
= [2k(1+k²)(4k²+1) + 2k³(4k²+1) -16k³(1+k²)]/(4k²+1)³
= 2k(1-2k²)/(4k²+1)³ = 0
k = 0或k = √2/2或k = -√2/2
(i) k = 0
此时直线l与x轴平行,且与圆和椭圆在上下顶点处相切,MN=0, 舍去。
(ii) k = √2/2或k = -√2/2
MN² = 48k²(1+k²)/(4k²+1)²
= 48*(1/2)(1 + 1/2)/(4*1/2 + 1)²
= 36/9
= 4
S = (1/2)*MN*r = (1/2)*4*1 = 2
注: m和k共有四对,关于x和y轴对称,但面积相等。
(a² - b²)/a² = 3/4
a² = 4b²
a = 2b
c = √(a² - b²) = √3b
A(a, 0), B(0, b), F(√3b, 0)
三角形ABF的面积S= (1/2)*FA*OB = (1/2)(a - √3b)b = 1 -√3/2
(a - √3b)b = (2b - √3b)b = 2 - √3
b = 1
a = 2
椭圆方程: x²/4 +y² = 1
直线l: y = kx + m, kx -y + m = 0
圆x² +y² = 1的圆心为原点,半径为1
原点与直线l的距离等于半径:1 = |k*0 - 0 + m|/√(k² + 1)
m² = k² + 1
将直线l的方程代入椭圆方程:
(4k² + 1)x² + 8kmx + 4(m² - 1) = 0
△ = (8km)² - 4(4k²+1)*4(m²-1)
= 64k² - 16m² + 16
= 64k² - 16(k²+1)+16
= 48k²
x1 = (-8km + √△)/(8k²+2), x2 = (-8km - √△)/(8k²+2)
y1 = kx1 + m, y2 = kx2 + m
MN² = (x1 - x2)² + (y1-y2)²
= (x1-x2)² +(kx1 + m - kx2 -m)
= (1 + k²)(x1 - x2)²
= (1+k²)[2√△)/(8k²+2)]²
= (1+k²)*48k²/(4k²+1)²
= 48k²(1+k²)/(4k²+1)²
MN上的高=圆半径1, 所以只须MN最大即可。MN最大,MN²也最大
MN² = f(k) = 48k²(1+k²)/(4k²+1)²
f(k)/48 = k²(1+k²)/(4k²+1)²
f'(k)/48 = 2k(1+k²)/(4k²+1)² + k²*2k/(4k²+1)² + k²(1+k²)(-2)*8k/(4k²+1)³
= [2k(1+k²)(4k²+1) + 2k³(4k²+1) -16k³(1+k²)]/(4k²+1)³
= 2k(1-2k²)/(4k²+1)³ = 0
k = 0或k = √2/2或k = -√2/2
(i) k = 0
此时直线l与x轴平行,且与圆和椭圆在上下顶点处相切,MN=0, 舍去。
(ii) k = √2/2或k = -√2/2
MN² = 48k²(1+k²)/(4k²+1)²
= 48*(1/2)(1 + 1/2)/(4*1/2 + 1)²
= 36/9
= 4
S = (1/2)*MN*r = (1/2)*4*1 = 2
注: m和k共有四对,关于x和y轴对称,但面积相等。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题目不全嘛
追问
且三角形abf等于(1-2分之根号3),已知直线l:y=kx+m与圆:x的平方+y的平方=1相切,若直线l与椭圆c交于m,n,求三角形omn的最大值。 拜托
追答
e=根号3/2 S△ABF=1-根号3/2
得a^2/b^2=4/1 1/2AF*OB=1-根号3/2
a/b=2/1 (a-c)b=2-根号3
c/a=根号3/2
得:a=2 c=根号3 b=1
x^2/4+y^2/1=1
当k不存在时 S=根号3/2
当k存在时 d=r=1
m^2=k^2+1
S=1/2*r*弦长 r=1
S=1/2*x弦长
弦长就是直线与椭圆的联立来求,我要关电脑了,对不起了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询