数学分析考研题
1.设z为x,y的可微函数,试将方程(x^2)*(z对x的偏导数)+(y^2)*(z对y的偏导数)=z^2变换为w=w(u,v)的方程,其中x=u,y=u/(1+uv),...
1.设z为x,y的可微函数,试将方程(x^2)*(z对x的偏导数)+(y^2)*(z对y的偏导数)=z^2变换为w=w(u,v)的方程,其中x=u,y=u/(1+uv),z=u/(1+uw)。
展开
1个回答
展开全部
du/dy
=1/(dy/du)
=(1+uv)^2
dv/dy
=1/(dy/dv)
=-(1+uv)^2/u^2
dz/dx
=dz/du*du/dx+dz/dw*dw/du*du/dx
=[(1+uw)-u(w+udw/du)]/(1+uw)^2*1-u^2/(1+uw)^2*dw/du*1
=1/(1+uw)^2
dz/dy
=dz/du*du/dy+dz/dw*(dw/du*du/dy+dw/dv*dv/dy)
=[(1+uw)-u(w+udw/du)]/(1+uw)^2*(1+uv)^2
-u^2/(1+uw)^2*((1+uv)^2*dw/du-(1+uv)^2/u^2*dw/dv)
x^2*dz/dx+y^2*dz/dy
=x^2*[1/(1+uw)^2]+y^2*{[(1+uw)-u(w+udw/du)]/(1+uw)^2*(1+uv)^2-u^2/(1+uw)^2*((1+uv)^2*dw/du-(1+uv)^2/u^2*dw/dv)}
=u^2*[1/(1+uw)^2]+[u/(1+uv)^2]^2*{[(1+uw)-u(w+udw/du)]/(1+uw)^2*(1+uv)^2-u^2/(1+uw)^2*((1+uv)^2*dw/du-(1+uv)^2/u^2*dw/dv)}=...=u^2/(1+uw)^2
=>(1-u^2*dw/du)=u^2*dw/du-dw/dv
=>2u^2*dw/du-dw/dv=1
=1/(dy/du)
=(1+uv)^2
dv/dy
=1/(dy/dv)
=-(1+uv)^2/u^2
dz/dx
=dz/du*du/dx+dz/dw*dw/du*du/dx
=[(1+uw)-u(w+udw/du)]/(1+uw)^2*1-u^2/(1+uw)^2*dw/du*1
=1/(1+uw)^2
dz/dy
=dz/du*du/dy+dz/dw*(dw/du*du/dy+dw/dv*dv/dy)
=[(1+uw)-u(w+udw/du)]/(1+uw)^2*(1+uv)^2
-u^2/(1+uw)^2*((1+uv)^2*dw/du-(1+uv)^2/u^2*dw/dv)
x^2*dz/dx+y^2*dz/dy
=x^2*[1/(1+uw)^2]+y^2*{[(1+uw)-u(w+udw/du)]/(1+uw)^2*(1+uv)^2-u^2/(1+uw)^2*((1+uv)^2*dw/du-(1+uv)^2/u^2*dw/dv)}
=u^2*[1/(1+uw)^2]+[u/(1+uv)^2]^2*{[(1+uw)-u(w+udw/du)]/(1+uw)^2*(1+uv)^2-u^2/(1+uw)^2*((1+uv)^2*dw/du-(1+uv)^2/u^2*dw/dv)}=...=u^2/(1+uw)^2
=>(1-u^2*dw/du)=u^2*dw/du-dw/dv
=>2u^2*dw/du-dw/dv=1
追问
麻烦请问“dz/dx=dz/du*du/dx+dz/dw*dw/du*du/dx
=[(1+uw)-u(w+udw/du)]/(1+uw)^2*1-u^2/(1+uw)^2*dw/du*1”是怎么得出来的啊?
追答
z依赖于u和w变化,u依赖于x变化却不依赖于y,w依赖于u和v变化,所以本来应是
dz/dx=dz/du*du/dx+dz/dw*(dw/du*du/dx+dw/dv*dv/dx)
但v却不依赖于x变化,所以上式为
dz/dx=dz/du*du/dx+dz/dw*(dw/du*du/dx+0)=dz/du*du/dx+dz/dw*dw/du*du/dx
至于下一个你问的等号为什么成立,你还是看看前面的步骤吧,(每个d*/d#都是什么),最好写到纸上再带到这个式子里。
做这种题主要先找出变量的依赖关系图树,而后再做才能心里有个数。
不明白再问我哈
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |