设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=
3个回答
展开全部
|A-E|
= |A-AA^T|
= |A(E-A^T)|
= |A||E-A^T|
= |A||E-A| --- (E-A^T)^T = E-A
= |A| (-1)^(2n+1) |A-E|
= -|A||A-E|
所以 |A-E|(1+|A|)=0
因为 |A|>0
所以 1+|A|≠0
所以 |A-E| = 0.
= |A-AA^T|
= |A(E-A^T)|
= |A||E-A^T|
= |A||E-A| --- (E-A^T)^T = E-A
= |A| (-1)^(2n+1) |A-E|
= -|A||A-E|
所以 |A-E|(1+|A|)=0
因为 |A|>0
所以 1+|A|≠0
所以 |A-E| = 0.
来自:求助得到的回答
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询