设f(x)有二阶函数,且f''(x)>0,limx趋于0f(x)/x=1.证明:当x>0时,有f(x)>x

mscheng19
2012-11-26 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2275万
展开全部
由条件,f(0)=lim f(x)=lim f(x)/x * lim x=1*0=0。
且f'(0)=lim (f(x)-f(0))/x=lim f(x)/x=1。
以上极限都是x趋于0。
因为f''(x)>0,故f‘(x)是严格递增的,故f'(x)>f'(0)=1,
令g(x)=f(x)-x,g'(x)=f'(x)-1>0,当x>0时,
g(x)是递增的,故g(x)>g(0)=f(0)-0=0,于是得
f(x)>x,当x>0时。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式