
A为(-2,√3),F是椭圆x²/16+y²/12=1的右焦点,点M在椭圆上,求MA+MF的取值范围
展开全部
解答:
x²/16+y²/12=1
a²=16,b²=12
∴ c²=a²-b²=4
右焦点是F(2,0),左焦点F'(-2,0)
则|AF‘|=√3
利用椭圆定义 MF+MF'=2a=8
∴ MA+MF=MA+8-MF'=MA-MF'+8
∵ |MA-MF'|≤AF’=√3 (三角形中两边之差小于第三边)
∴ -√3≤MA-MF'≤√3
∴8-√3≤ MA-MF'+8≤8+√3
即MA+MF的取值范围是 [8-√3,8+√3]
x²/16+y²/12=1
a²=16,b²=12
∴ c²=a²-b²=4
右焦点是F(2,0),左焦点F'(-2,0)
则|AF‘|=√3
利用椭圆定义 MF+MF'=2a=8
∴ MA+MF=MA+8-MF'=MA-MF'+8
∵ |MA-MF'|≤AF’=√3 (三角形中两边之差小于第三边)
∴ -√3≤MA-MF'≤√3
∴8-√3≤ MA-MF'+8≤8+√3
即MA+MF的取值范围是 [8-√3,8+√3]
展开全部
设左焦点是F1 所以MF1+MF=8 所以MA+MF=8+MA-MF1 且|MA-MF1|<=AF1=√3
所以范围是【8-√3,8+√3】
所以范围是【8-√3,8+√3】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
buhui`~~~~
追问
麻烦你不会回答就不要回答了,又不是给你送分的。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询