求大神解答44题,需要详细的解题步骤与解析,在线的,谢谢!!!
3个回答
展开全部
∫(0->π/2)|sinx-cosx|dx
=∫(0->π/4)(cosx-sinx)dx+∫(π/4->π/2)(sinx-cosx)dx
=sinx+cosx|(0->π/4)+(-cosx-sinx)|(π/4->π/2)
=√2-1+√2-1
=2(√2-1)
=∫(0->π/4)(cosx-sinx)dx+∫(π/4->π/2)(sinx-cosx)dx
=sinx+cosx|(0->π/4)+(-cosx-sinx)|(π/4->π/2)
=√2-1+√2-1
=2(√2-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为在0到π/4的区间sinx-cosx的值是负数,而在π/4到π/2sinx-cosx的值是正数,
所以∫(0→π/2) |sinx-cosx|dx
=∫(0→π/4) (cosx-sinx)dx + ∫(π/4→π/2) (sinx-cosx)dx
=(sinx+cosx) | (0→π/4) + (-cosx-sinx) | (π/4→π/2)
=(√2 -1) + (-1+√2)=2(√2 -1)
所以∫(0→π/2) |sinx-cosx|dx
=∫(0→π/4) (cosx-sinx)dx + ∫(π/4→π/2) (sinx-cosx)dx
=(sinx+cosx) | (0→π/4) + (-cosx-sinx) | (π/4→π/2)
=(√2 -1) + (-1+√2)=2(√2 -1)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询