
当|x|≤2时f(x)=4-x² 当|x|>2时f(x)=0 求f(f(x)) 要详细解答过程
2个回答
展开全部
当|x|≤2时f(x)=4-x²>=0,
4-x^2<=2,2<=x^2,
∴√2<=|x|<=2,此时f[f(x)]=f(4-x^2)=4-(4-x^2)^2;
|x|<√2时f[f(x)]=f(4-x^2)=0;
|x|>2时f[f(x)]=f(0)=4.
综上,f[f(x)]={0,|x|<√2;
.....................{4-(4-x^2)^2,√2<=|x|<=2;
.....................{4,|x|>2.
4-x^2<=2,2<=x^2,
∴√2<=|x|<=2,此时f[f(x)]=f(4-x^2)=4-(4-x^2)^2;
|x|<√2时f[f(x)]=f(4-x^2)=0;
|x|>2时f[f(x)]=f(0)=4.
综上,f[f(x)]={0,|x|<√2;
.....................{4-(4-x^2)^2,√2<=|x|<=2;
.....................{4,|x|>2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询