求函数解析式,需要过程

求函数解析式,需要过程第四题... 求函数解析式,需要过程第四题 展开
 我来答
民以食为天fG
高粉答主

2018-09-02 · 每个回答都超有意思的
知道顶级答主
回答量:7.3万
采纳率:79%
帮助的人:7980万
展开全部


请看正确的解答!

追答

北京羿射旭科技有限公司
2019-11-29 广告
高阻尼隔震橡胶支座的价格大概在每个一两百元,便宜的有十几二十元,贵的有好几百元。高阻尼隔震橡胶支座的价格受多方面影响,如品牌、类别、规格、市场等。关键还是要学会挑选方法。变检算是否满足相应地震力作用下的使用要求。b..应根据跨度和温度变化幅... 点击进入详情页
本回答由北京羿射旭科技有限公司提供
果恨豆那1w
2018-09-02 · 超过23用户采纳过TA的回答
知道答主
回答量:28
采纳率:87%
帮助的人:2.2万
展开全部
解答:
已知f(x)=√x(x-a)可知
f(x)的导数f‘(x)=(2x-a)/2√x(x-a),
令f(x)的导数f‘(x)=(2x-a)/2√x(x-a)=0,
可知x=a/2,且x≠a,x≠0.
当a>0时,f(x)的定义域为x≥a∪x≤0
x∈(-∞,0]单调递减
x∈[a,+∞)单调递增。
当a<0时,f(x)的定义域为x≤a,x≥0
x∈(-∞,a]单调递减
x∈[0,+∞)单调递增。
当a=0时,f(x)=0;
A、g(a)为f(x)在区间〖0,2〗上的最小值
可知a≥0,由上述的单调区间可知f(x)在x∈[a,+∞)单调递增
即(x)在x∈[0,2]单调递增
可知g(a)=f(0)=0。
2、对f(x)求导,得lnx+1=0
令导数为零,x=e^(-1)
x大于e^(-1)为增函数,小于e^(-1)为减函数
下面对t进行讨论
当t大于e^(-1),f(t+2)最大
当t+2小于e^(-1),f(t)最大
当e^(-1)在t和t+2之间时,比较f(t)和f(t+2)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式