1个回答
展开全部
let
1/[(t^2-1)(t+1) ] ≡ A/(t-1) +B/(t+1) + C/(t+1)^2
=>
1≡ A(t+1)^2 +B(t-1)(t+1) + C(t-1)
t=1, =>A=1/4
t=-1, => C=1/2
coef. of t^2
A+B=0
B=-1/4
1/[(t^2-1)(t+1) ] ≡ (1/4)[1/(t-1)] -(1/4) [1/(t+1)] + (1/2)[1/(t+1)^2]
∫ dt/[(t^2-1)(t+1) ]
=∫ { (1/4)[1/(t-1)] -(1/4) [1/(t+1)] + (1/2)[1/(t+1)^2] } dt
=(1/4)ln|t-1| -(1/4)ln|t+1| - (1/2)[1/(t+1)] + C
1/[(t^2-1)(t+1) ] ≡ A/(t-1) +B/(t+1) + C/(t+1)^2
=>
1≡ A(t+1)^2 +B(t-1)(t+1) + C(t-1)
t=1, =>A=1/4
t=-1, => C=1/2
coef. of t^2
A+B=0
B=-1/4
1/[(t^2-1)(t+1) ] ≡ (1/4)[1/(t-1)] -(1/4) [1/(t+1)] + (1/2)[1/(t+1)^2]
∫ dt/[(t^2-1)(t+1) ]
=∫ { (1/4)[1/(t-1)] -(1/4) [1/(t+1)] + (1/2)[1/(t+1)^2] } dt
=(1/4)ln|t-1| -(1/4)ln|t+1| - (1/2)[1/(t+1)] + C
更多追问追答
追问
我知道这样做能做出正确答案,但为什么我那种不行呢?
追答
1/[(t^2-1)(t+1) ]≡ (At+B)/(t+1)^2 +C/(t+1)
这是不行的
1/[(t^2-1)(t+1) ] ≡ A/(t-1) +B/(t+1) + C/(t+1)^2
这是partial fraction 最基本的方法
1/[( x-a)^n .(x-b)^n]
≡ A1/(x-a) +A2/(x-a)^2+...+An/(x-a)^n +B1/(x-b)+B2/(x-b)^2+...+Bn/(x-b)^n
因为 出现 (t+1)^2, 所以
1/[(t^2-1)(t+1) ] ≡ A/(t-1) +B/(t+1) + C/(t+1)^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询