微积分题目
展开全部
(π/2)∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx
let
y = π-x
dy = -dx
x=0, y=π
x=π,y=0
∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx =∫(π->0) [ ∫(π->0) [ (π-y)siny /(1+(cosy)^2 ) ](-dy)
=∫(0->π) [ ∫(0->π) [ (π-x)sinx /(1+(cosx)^2 ) ]dx
2∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx =π∫(0->π) sinx/(1+(cosx)^2 ) ]dx
∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx = (π/2)∫(0->π) sinx/(1+(cosx)^2 ) ]dx
(π/2)∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx =(π/2)^2∫(0->π) sinx/(1+(cosx)^2 ) ]dx
let
y = π-x
dy = -dx
x=0, y=π
x=π,y=0
∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx =∫(π->0) [ ∫(π->0) [ (π-y)siny /(1+(cosy)^2 ) ](-dy)
=∫(0->π) [ ∫(0->π) [ (π-x)sinx /(1+(cosx)^2 ) ]dx
2∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx =π∫(0->π) sinx/(1+(cosx)^2 ) ]dx
∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx = (π/2)∫(0->π) sinx/(1+(cosx)^2 ) ]dx
(π/2)∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx =(π/2)^2∫(0->π) sinx/(1+(cosx)^2 ) ]dx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=lim(x→0)(tanx-x)/x²tanx
=lim(x→0)(tanx-x)/x³(等价替换tanx~x)
=lim(x→0)(x³/2)/x³(等价替换tanx-x~x³/2)
=1/2
=lim(x→0)(tanx-x)/x³(等价替换tanx~x)
=lim(x→0)(x³/2)/x³(等价替换tanx-x~x³/2)
=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询