初中数学的一元一次方程的实际问题的学习方法!急急急急急急
展开全部
合并同类项 ⒈依据:乘法分配律
⒉把未知数相同且其次数也相同的项合并成一项;常数计算后合并成一项
⒊合并时次数不变,只是系数相加减。
移项
⒈依据:等式的性质一
⒉含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
⒊把方程一边某项移到另一边时,一定要变号{例如:移项时将+改为-}。
性质
等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立
编辑本段解法步骤
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
依据:等式的性质2
⒉去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)
依据:乘法分配律
⒊移项:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
依据:等式的性质1
⒋合并同类项:把方程化成ax=b(a≠0)的形式;
依据:乘法分配律(逆用乘法分配律)
⒌系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
依据:等式的性质1
同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
做一元一次方程应用题的重要方法:
⒈认真审题(审题)
⒉分析已知和未知量
⒊找一个合适的等量关系
⒋设一个恰当的未知数
⒌列出合理的方程 (列式)
⒍解出方程(解题)
⒎检验
⒏写出答案(作答)
ax=b
解:当a≠0,b=0时,
ax=0
x=0(此种情况与下一种一样)
当a≠0时,x=b/a。
当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)
当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)
例:
(3x+1)/2-2=(3x-2)/10-(2x+3)/5
去分母(方程两边同乘各分母的最小公倍数)得:
5(3x+1)-10×2=(3x-2)-2(2x+3)
去括号得:
15x+5-20=3x-2-4x-6
移项得:
15x-3x+4x=-2-6-5+20
合并同类项得:
16x=7
系数化为1得:
x=7/16。
字母公式
a=b a+c=b+c a-c=b-c
a=b ac=bc
a=bc(c≠0)= a÷c=b÷c
检验 算出后需检验的
求根公式
由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。
但对于标准形式下的一元一次方程 aX+b=0
可得出求根公式 X=-(b/a)
⒉把未知数相同且其次数也相同的项合并成一项;常数计算后合并成一项
⒊合并时次数不变,只是系数相加减。
移项
⒈依据:等式的性质一
⒉含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
⒊把方程一边某项移到另一边时,一定要变号{例如:移项时将+改为-}。
性质
等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立
编辑本段解法步骤
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
依据:等式的性质2
⒉去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)
依据:乘法分配律
⒊移项:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
依据:等式的性质1
⒋合并同类项:把方程化成ax=b(a≠0)的形式;
依据:乘法分配律(逆用乘法分配律)
⒌系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
依据:等式的性质1
同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
做一元一次方程应用题的重要方法:
⒈认真审题(审题)
⒉分析已知和未知量
⒊找一个合适的等量关系
⒋设一个恰当的未知数
⒌列出合理的方程 (列式)
⒍解出方程(解题)
⒎检验
⒏写出答案(作答)
ax=b
解:当a≠0,b=0时,
ax=0
x=0(此种情况与下一种一样)
当a≠0时,x=b/a。
当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)
当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)
例:
(3x+1)/2-2=(3x-2)/10-(2x+3)/5
去分母(方程两边同乘各分母的最小公倍数)得:
5(3x+1)-10×2=(3x-2)-2(2x+3)
去括号得:
15x+5-20=3x-2-4x-6
移项得:
15x-3x+4x=-2-6-5+20
合并同类项得:
16x=7
系数化为1得:
x=7/16。
字母公式
a=b a+c=b+c a-c=b-c
a=b ac=bc
a=bc(c≠0)= a÷c=b÷c
检验 算出后需检验的
求根公式
由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。
但对于标准形式下的一元一次方程 aX+b=0
可得出求根公式 X=-(b/a)
参考资料: baidu
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
先合并同类项,再移项,求未知数 。等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方),等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方),等式仍然成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先要认真读题,确定你要解的未知数X,结合题意列出方程,并分析数量关系,再解方程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据问题一步一步列出方程,进行求解,就OK了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询