导函数在某点连续,说明原函数在这点可导
导函数在某点连续,说明原函数在这点可导例如3.4,我能用定义法求0处可导来解题么?如果可以,为什么解出来答案与常规解法不同?...
导函数在某点连续,说明原函数在这点可导例如3.4,我能用定义法求0处可导来解题么?如果可以,为什么解出来答案与常规解法不同?
展开
2个回答
展开全部
在某点函数连续,那么至少函数值要存在。同样的道理,在某点导函数连续,至少导函数存在,那么原函数在该点领域内当然可导。
如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)
如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。
如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)
如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。
若将一点扩展成函数f(x)在其定义域包含的某开区间I内每一个点,那么函数f(x)在开区间内可导,这时对于内每一个确定的值,都对应着f(x)的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数f(x)的导函数,记作:y'或者f′(x)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询