2个回答
展开全部
解:
∫t^2/(1+t^2)^2 dt
=∫[1/(t^2+1)-1/(t^2+1)^2] dt
=∫1/(t^2+1) dt-∫1/(t^2+1)^2 dt 【令t=tanu,则dt=(secu)^2 du】
=∫1/(t^2+1) dt-∫(cosu)^2 du
=∫1/(t^2+1) dt-∫[1/2·cos2u+1/2]du
=∫1/(t^2+1) dt-1/2∫cos2u du-∫1/2du
=arctant-1/4·sin2u-u/2+C
=arctant-1/4·2t/(1+t^2)-(arctant)/2+C
=(arctant)/2-t/[2(1+t^2)]+C
∫t^2/(1+t^2)^2 dt
=∫[1/(t^2+1)-1/(t^2+1)^2] dt
=∫1/(t^2+1) dt-∫1/(t^2+1)^2 dt 【令t=tanu,则dt=(secu)^2 du】
=∫1/(t^2+1) dt-∫(cosu)^2 du
=∫1/(t^2+1) dt-∫[1/2·cos2u+1/2]du
=∫1/(t^2+1) dt-1/2∫cos2u du-∫1/2du
=arctant-1/4·sin2u-u/2+C
=arctant-1/4·2t/(1+t^2)-(arctant)/2+C
=(arctant)/2-t/[2(1+t^2)]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |