∫(x^6+1)/(x^4+1)dx 我已经彻底无奈了,大神救救我吧T^T
展开全部
会点技巧的话,会变得很简单。
x⁶ + 1 = x²[(x⁴ + 1) - 1] + 1
= x²(x⁴ + 1) - x² + 1
∫ (x⁶ + 1)/(x⁴ + 1) dx
= ∫ [x²(x⁴ + 1) + 1 - x²]/(x⁴ + 1) dx
= ∫ x² dx - ∫ (x² - 1)/(x⁴ + 1) dx
= x³/3 - ∫ (1 - 1/x²)/(x² + 1/x²) dx
= x³/3 - ∫ d(x + 1/x)/[(x + 1/x)² - 2]
= x³/3 - 1/(2√2) * ln| [(x + 1/x) - √2]/[(x + 1/x) + √2] | + C
= x³/3 - (√2/4)ln| (x² - √2x + 1)/(x² + √2x + 1) | + C
x⁶ + 1 = x²[(x⁴ + 1) - 1] + 1
= x²(x⁴ + 1) - x² + 1
∫ (x⁶ + 1)/(x⁴ + 1) dx
= ∫ [x²(x⁴ + 1) + 1 - x²]/(x⁴ + 1) dx
= ∫ x² dx - ∫ (x² - 1)/(x⁴ + 1) dx
= x³/3 - ∫ (1 - 1/x²)/(x² + 1/x²) dx
= x³/3 - ∫ d(x + 1/x)/[(x + 1/x)² - 2]
= x³/3 - 1/(2√2) * ln| [(x + 1/x) - √2]/[(x + 1/x) + √2] | + C
= x³/3 - (√2/4)ln| (x² - √2x + 1)/(x² + √2x + 1) | + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询