4个回答
展开全部
n⁴x
=(sin²x)²
=[(1-cos(2x))/2]²
=[cos²(2x)-2cos(2x)+1]/4
=cos²(2x)/4 - cos(2x)/2 +1/4
=[1+cos(4x)]/8 -cos(2x) /2 +1/4
=cos(4x) /8 -cos(2x)/2 +3/8
∫sin⁴x dx
=∫[cos(4x) /8 -cos(2x)/2 +3/8]dx
=sin(4x)/32 -sin(2x)/4 +3x/8 +C
第一种:
sin⁶x
= (sin²x)³
= [(1 - cos2x)/2]³
= (1/8)(1 - 3cos2x + 3cos²2x - cos³2x)
= 1/8 - (3/8)cos2x + (3/8)[(1 + cos4x)/2] - (1/8)cos³2x
= ...
= 5/16 - (15/32)cos2x + (3/16)cos4x - (1/32)cos6x,之后积分
这个是常用方法,不详写了
—————————————————————————————————
第二种:
A(n) = ∫ sinⁿx dx
= ∫ sinⁿ⁻¹xsinx dx
= - ∫ sinⁿ⁻¹x d(cosx)
= - sinⁿ⁻¹xcosx + ∫ cosx • d(sinⁿ⁻¹)
= - sinⁿ⁻¹xcosx + (n - 1)∫ cosx • sinⁿ⁻²x • cosx dx
= - sinⁿ⁻¹xcosx + (n - 1)∫ sinⁿ⁻²x • (1 - sin²x) dx
= - sinⁿ⁻¹xcosx + (n - 1)A(n - 2) - (n - 1)A(n)
[1 + (n - 1)]A(n) = - sinⁿ⁻¹xcosx + (n - 1)A(n - 2)
A(n) = (- 1/n)sinⁿ⁻¹xcosx + [(n - 1)/n]A(n - 2),这就是让sinⁿx降幂的公式
∴
∫ sin⁶x dx
= (- 1/6)sin⁵xcosx + (5/6)∫ sin⁴x dx
= (- 1/6)sin⁵xcosx + (5/6)[(- 1/4)sin³xcosx + (3/4)∫ sin²x dx]
= (- 1/6)sin⁵xcosx - (5/24)sin³xcosx + (15/24)[(- 1/2)sinxcosx + (1/2)∫ dx]
= (- 1/6)sin⁵xcosx - (5/24)sin³xcosx - (15/48)sinxcosx + 15x/48 + C
特别地,当下限是0,上限是π/2时,有
∫(0→π/2) sinⁿx dx = ∫(0→π/2) cosⁿx dx =
{ (n - 1)!/n! ,n是正奇数
{ (n - 1)!/n! • π/2,n是正偶数
=(sin²x)²
=[(1-cos(2x))/2]²
=[cos²(2x)-2cos(2x)+1]/4
=cos²(2x)/4 - cos(2x)/2 +1/4
=[1+cos(4x)]/8 -cos(2x) /2 +1/4
=cos(4x) /8 -cos(2x)/2 +3/8
∫sin⁴x dx
=∫[cos(4x) /8 -cos(2x)/2 +3/8]dx
=sin(4x)/32 -sin(2x)/4 +3x/8 +C
第一种:
sin⁶x
= (sin²x)³
= [(1 - cos2x)/2]³
= (1/8)(1 - 3cos2x + 3cos²2x - cos³2x)
= 1/8 - (3/8)cos2x + (3/8)[(1 + cos4x)/2] - (1/8)cos³2x
= ...
= 5/16 - (15/32)cos2x + (3/16)cos4x - (1/32)cos6x,之后积分
这个是常用方法,不详写了
—————————————————————————————————
第二种:
A(n) = ∫ sinⁿx dx
= ∫ sinⁿ⁻¹xsinx dx
= - ∫ sinⁿ⁻¹x d(cosx)
= - sinⁿ⁻¹xcosx + ∫ cosx • d(sinⁿ⁻¹)
= - sinⁿ⁻¹xcosx + (n - 1)∫ cosx • sinⁿ⁻²x • cosx dx
= - sinⁿ⁻¹xcosx + (n - 1)∫ sinⁿ⁻²x • (1 - sin²x) dx
= - sinⁿ⁻¹xcosx + (n - 1)A(n - 2) - (n - 1)A(n)
[1 + (n - 1)]A(n) = - sinⁿ⁻¹xcosx + (n - 1)A(n - 2)
A(n) = (- 1/n)sinⁿ⁻¹xcosx + [(n - 1)/n]A(n - 2),这就是让sinⁿx降幂的公式
∴
∫ sin⁶x dx
= (- 1/6)sin⁵xcosx + (5/6)∫ sin⁴x dx
= (- 1/6)sin⁵xcosx + (5/6)[(- 1/4)sin³xcosx + (3/4)∫ sin²x dx]
= (- 1/6)sin⁵xcosx - (5/24)sin³xcosx + (15/24)[(- 1/2)sinxcosx + (1/2)∫ dx]
= (- 1/6)sin⁵xcosx - (5/24)sin³xcosx - (15/48)sinxcosx + 15x/48 + C
特别地,当下限是0,上限是π/2时,有
∫(0→π/2) sinⁿx dx = ∫(0→π/2) cosⁿx dx =
{ (n - 1)!/n! ,n是正奇数
{ (n - 1)!/n! • π/2,n是正偶数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有公式,直接用公式吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询