已知函数f(x)=x^2-kx+4,若f(x)>0在[1,a]上恒成立,求k的范围

leoyan7
2012-11-28 · TA获得超过8336个赞
知道大有可为答主
回答量:1843
采纳率:33%
帮助的人:2434万
展开全部
函数f(x)=x^2-kx+4,若f(x)>0在[1,a]上恒成立

若f(x)与x轴无交点
△=k²-16<0
-4<k<4
若与x轴有交点
则 x1<1,x2<1
△=k²-16≥0,即k≥4,或k≤ -4
x1+x2=k<2
故k≤ -4
综上取并集
k<4
wzhq777
高粉答主

2012-11-30 · 醉心答题,欢迎关注
知道顶级答主
回答量:11.1万
采纳率:95%
帮助的人:2.2亿
展开全部
①当Δ<0,即K^2-16<0,-4<K<4;
②当Δ>0,即K^2-16>0,K<-4或K>4,还须:
对称轴X=K/2<1,f(1)>0。
∴K<2,1-K+4>0,
∴K<2,且K<5,
综合之:K<-4,
③当Δ=0即K=±4,K=4不成立,
∴K=-4。

综上所述:当K<4时,f(X)>0在[1,a]上恒成立。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
桂秋梵顺0FD
2012-11-28 · TA获得超过102个赞
知道答主
回答量:76
采纳率:0%
帮助的人:35.3万
展开全部
分三种情况讨论,1在顶点右边;1在左边,a在顶点左边;1在左边,a在定点右边
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式