3个回答
展开全部
(4)
∫(-e->-1) 1/x dx
=[ln|x|]|(-e->-1)
=-1
(5)
∫(0->π/2) 2[sin(x/2)]^2 dx
=∫(0->π/2) (1- cosx) dx
= [ x - sinx]|(0->π/2)
=π/2 -1
(6)
∫(0->2π) | sinx| dx
=∫(0->π) sinx dx -∫(π->2π) sinx dx
=-[cosx]|(0->π) +[cosx]|(π->2π)
=4
∫(-e->-1) 1/x dx
=[ln|x|]|(-e->-1)
=-1
(5)
∫(0->π/2) 2[sin(x/2)]^2 dx
=∫(0->π/2) (1- cosx) dx
= [ x - sinx]|(0->π/2)
=π/2 -1
(6)
∫(0->2π) | sinx| dx
=∫(0->π) sinx dx -∫(π->2π) sinx dx
=-[cosx]|(0->π) +[cosx]|(π->2π)
=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询