高数题目求解
2个回答
展开全部
∫(0->π/3) ( 1+cosx)^2 dx
=∫(0->π/3) [ 1+2cosx + (cosx)^2 ] dx
=(1/2) ∫(0->π/3) ( 3+4cosx + cos2x ) dx
=(1/2)[ 3x+4sinx +(1/2)sin2x]|(0->π/3)
=(1/2) [ π + 2√3 + (1/4)√3 ]
=(1/2) [ π + (9/4)√3 ]
=(1/2)π + (9/8)√3
∫(π/3->π/2) (3cosx)^2 dx
=(9/2)∫(π/3->π/2) (1+cos2x) dx
=(9/2)[ x +(1/2)sin2x] |(π/3->π/2)
=(9/2) [ ( π/2+0) -(π/3 +(1/4)√3) ]
=(9/2) [ π/6 -(1/4)√3 ]
=(3/4)π - (9/8)√3
2[∫(0->π/3) ( 1+cosx)^2 dx + ∫(π/3->π/2) (3cosx)^2 dx ]
=2[ (1/2)π + (9/8)√3 +(3/4)π - (9/8)√3 ]
= (5/2)π
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询