一道数学题,两种方法分别做(详情看图片)
展开全部
其实你对这道题理解上是有一些问题的
首先你要明确的是,点到直线的距离,就是从该点向这条直线作垂线,垂足和该点之间线段的长度就是点到直线的距离。这个距离无所谓
最长最短,他就是作垂线。
第二,题里面给出的直线,它是一条动直线,因此,这个点到这条直线的距离也是不确定的。
第三,这道题让我们求的就是这些变化的距离之中最大的值
这道题采用了两种方法做,第一种就是解析法,把距离表示出来,然后把这个解析式求解最大值,求最大值的时候,利用了求导。因为这是一个现实问题,肯定有最大值,所以咱们把导数求出来,只需要令导数等于零就可以解述正确结果。
第二种方法作图,由于给定的直线,他是过定点的。那么,咱们做出任意一条直线,然后去研究它。设定点为q点。那么我们发现,当我们画出任意一条与pq不垂直的直线时,表示出被点到该直线的距离,将垂足设为o点。那么,在poq这个直角三角形中,Pq始终充当斜边,也就是说,pq是永远大于po的。因此,只有当pq为垂线段,距离才是最大
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询