1个回答
展开全部
令1/(1+x^3) = a/(1+x) + (bx+c)/(x^2-x+1)
右侧通分得到其分子为ax^2 -ax+a + bx+c+bx^2 +cx=1
所以a+b=0, b-a+c=0, a+c=1
得到a=1/3, b=-1/3, c= 2/3
所以1/(1+x^3) = 1/3 * 1/(1+x) + (-x/3 +2/3) /(x^2-x+1)
第一项积分为1/3 ln|1+x| +C
d(x^2-x+1) = 2x -1dx
(-x/3 +2/3) /(x^2-x+1)dx = (-x/3 +1/6 +1/2)/(x^2-x+1) dx
=-1/6 * 1/(x^2-x+1) d(x^2-x+1) + 1/2 *1/(x^2-x+1) dx
这样第一项为-1/6 ln(x^2-x+1) +C
1/2 *1/(x^2-x+1) dx = 1/2 * 1/[(x-1/2)^2 +3/4] dx
= 1/2 /(3/4) * 1/[((x-1/2) *2/根号3)^2 +1] dx
= 1/2 * 4/3 * 根号3/2 arctan (x *2根号3/3 -根号3/3)+C
三个加起来即可
右侧通分得到其分子为ax^2 -ax+a + bx+c+bx^2 +cx=1
所以a+b=0, b-a+c=0, a+c=1
得到a=1/3, b=-1/3, c= 2/3
所以1/(1+x^3) = 1/3 * 1/(1+x) + (-x/3 +2/3) /(x^2-x+1)
第一项积分为1/3 ln|1+x| +C
d(x^2-x+1) = 2x -1dx
(-x/3 +2/3) /(x^2-x+1)dx = (-x/3 +1/6 +1/2)/(x^2-x+1) dx
=-1/6 * 1/(x^2-x+1) d(x^2-x+1) + 1/2 *1/(x^2-x+1) dx
这样第一项为-1/6 ln(x^2-x+1) +C
1/2 *1/(x^2-x+1) dx = 1/2 * 1/[(x-1/2)^2 +3/4] dx
= 1/2 /(3/4) * 1/[((x-1/2) *2/根号3)^2 +1] dx
= 1/2 * 4/3 * 根号3/2 arctan (x *2根号3/3 -根号3/3)+C
三个加起来即可
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询